Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a CDH12 potential candidate genetic variant for an autosomal dominant form of transgrediens and progrediens palmoplantar keratoderma in a Tunisian family

Abstract

Molecular diagnosis of rare inherited palmoplantar keratoderma (PPK) is still challenging. We investigated at the clinical and genetic level a consanguineous Tunisian family presenting an autosomal dominant atypical form of transgrediens and progrediens PPK to better characterize this ultrarare disease and to identify its molecular etiology. Whole-exome sequencing (WES), filtering strategies, and bioinformatics analysis have been achieved. Clinical investigation and follow up over 13 years of this Tunisian family with three siblings formerly diagnosed as an autosomal recessive form of Mal de Melela-like conducted us to reconsider its initial phenotype. Indeed, the three patients presented clinical features that overlap both Mal de Meleda and progressive symmetric erythrokeratoderma (PSEK). The mode of inheritance was also reconsidered, since the mother, initially classified as unaffected, exhibited a similar expression of the disease. WES analysis showed the absence of potentially functional rare variants in known PPKs or PSEK-related genes. Results revealed a novel heterozygous nonsynonymous variant in cadherin-12 gene (CDH12, NM_004061, c.1655C > A, p.Thr552Asn) in all affected family members. This variant is absent in dbSNP and in 50 in-house control exomes. In addition, in silico analysis of the mutated 3D domain structure predicted that this variant would result in cadherin-12 protein destabilization and thermal instability. Functional annotation and biological network construction data provide further supporting evidence for the potential role of CDH12 in the maintenance of skin integrity. Taken together, these results suggest that CDH12 gene is a potential candidate gene for an atypical presentation of an autosomal dominant form of transgrediens and progrediens PPK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33:228–37. http://www.ncbi.nlm.nih.gov/pubmed/12610532.

    Article  CAS  Google Scholar 

  2. Lai-Cheong JE, McGrath JA. Next-generation diagnostics for inherited skin disorders. J Investig Dermatol. 2011;131:1971–3. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15350557.

    Article  CAS  Google Scholar 

  3. Hsu TM, Kwok PY. Advances in molecular medicine. J Am Acad Dermatol. 2001;44:847–55. http://linkinghub.elsevier.com/retrieve/pii/S0190962201537731.

    Article  CAS  Google Scholar 

  4. Kimyai-Asadi A, Kotcher LB, Jih MH. The molecular basis of hereditary palmoplantar keratodermas. J Am Acad Dermatol. 2002;47:327–43. http://www.ncbi.nlm.nih.gov/pubmed/12196741.

    Article  Google Scholar 

  5. Bchetnia M, Charfeddine C, Kassar S, Zribi H, Guettiti HT, Ellouze F, et al. Clinical and mutational heterogeneity of Darier disease in Tunisian Families. Arch Dermatol. 2009;145. https://doi.org/10.1001/archdermatol.2009.52.

  6. Bchetnia M, Laroussi N, Youssef M, Charfeddine C, Ben Brick AS, Boubaker MS, et al. Particular Mal de Meleda phenotypes in Tunisia and mutations founder effect in the Mediterranean region. Biomed Res Int. 2013;2013:1–7. http://www.hindawi.com/journals/bmri/2013/206803/.

    Article  Google Scholar 

  7. Charfeddine C, Mokni M, Kassar S, Zribi H, Bouchlaka C, Boubaker S, et al. Further evidence of the clinical and genetic heterogeneity of recessive transgressive PPK in the Mediterranean region. J Hum Genet. 2006;51:841–5. https://doi.org/10.1007/s10038-006-0002-8.

    Article  PubMed  Google Scholar 

  8. Castellana S, Mazza T. Congruency in the prediction of pathogenic missense mutations: state-of-the-art web-based tools. Brief Bioinform. 2013;14:448–59. http://www.ncbi.nlm.nih.gov/pubmed/23505257.

    Article  CAS  Google Scholar 

  9. Castellana S, Fusilli C, Mazza T. A broad overview of computational methods for predicting the pathophysiological effects of non-synonymous variants. 2016; 423–40. http://link.springer.com/10.1007/978-1-4939-3572-7_22.

  10. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. https://doi.org/10.1093/nar/gkp215.

    Article  CAS  Google Scholar 

  11. Has C, Technau-Hafsi K. Palmoplantar keratodermas: clinical and genetic aspects. J der Dtsch Dermatologischen Ges. 2016;14:123–40. http://www.ncbi.nlm.nih.gov/pubmed/26819106.

    Google Scholar 

  12. Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, et al. VarElect: the phenotype-based variation prioritizer of the GeneCards Suite. BMC Genom. 2016;17 Suppl 2:444. http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-2722-2.

    Article  CAS  Google Scholar 

  13. Chivian D, Kim DE, Malmström L, Bradley P, Robertson T, Murphy P, et al. Automated prediction of CASP-5 structures using the Robetta server. Proteins. 2003;53 Suppl 6:524–33. https://doi.org/10.1002/prot.10529.

    Article  CAS  Google Scholar 

  14. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    Article  CAS  Google Scholar 

  15. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38 Suppl 2: (Web Server issue) W214–W220.

    Article  CAS  Google Scholar 

  16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  Google Scholar 

  17. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3. http://www.ncbi.nlm.nih.gov/pubmed/19237447.

    Article  CAS  Google Scholar 

  18. Bindea G, Galon J, Mlecnik B. CluePedia cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29:661–3. http://www.ncbi.nlm.nih.gov/pubmed/23325622.

    Article  CAS  Google Scholar 

  19. Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009;1:a003053. https://doi.org/10.1101/cshperspect.a003053.

    Article  Google Scholar 

  20. Zhao L, Vahlquist A, Virtanen M, Wennerstrand L, Lind L, Lundström A, et al. Palmoplantar keratoderma of the Gamborg-Nielsen type is caused by mutations in the SLURP1 gene and represents a variant of Mal de Meleda. Acta Derm Venereol. 2014;94:707–10. http://www.ncbi.nlm.nih.gov/pubmed/24604124.

    Article  CAS  Google Scholar 

  21. Kubo A. Nagashima-type palmoplantar keratosis: a common Asian type caused by SERPINB7 protease inhibitor deficiency. J Investig Dermatol. 2014;134:2076–9. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15369499.

    Article  CAS  Google Scholar 

  22. Athanikar SB, Inamadar AC, Palit A, Sampagavi VV, Deshmukh NS. Greither’s disease. Indian J Dermatol Venereol Leprol.2003;69:292–3. http://www.ncbi.nlm.nih.gov/pubmed/17642916.

  23. Duchatelet S, Hovnanian A. Erythrokeratodermia variabilis et progressiva allelic to oculo-dento-digital dysplasia. J Investig Dermatol. 2015;135:1475–8. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15372687.

    Article  CAS  Google Scholar 

  24. Mahajan V, Khatri G, Chauhan P, Mehta K, Raina R, Gupta M. Progressive symmetric erythrokeratoderma having overlapping features with erythrokeratoderma variabilis and lesional hypertrichosis: is nomenclature “erythrokeratoderma variabilis progressiva” more appropriate? Indian J Dermatol. 2015;60:410 http://www.ncbi.nlm.nih.gov/pubmed/26288417.

    Article  Google Scholar 

  25. Prabhu S, Shenoi SD, Pai SB, Handattu S, Bhattachan B. Progressive and symmetric erythrokeratoderma of adult onset: a rare case. Indian Dermatol Online J. 2010;1:43–5. http://www.idoj.in/text.asp?2010/1/1/43/73261.

    Article  Google Scholar 

  26. Wei S, Zhou Y, Zhang TD, Huang ZM, Zhang XB, Zhu HL, et al. Evidence for the absence of mutations at GJB3, GJB4 and LOR in progressive symmetrical erythrokeratodermia. Clin Exp Dermatol. 2011;36:399–405. https://doi.org/10.1111/j.1365-2230.2010.03974.x.

    Article  CAS  Google Scholar 

  27. Common JEA, O’Toole EA, Leigh IM, Thomas A, Griffiths WAD, Venning V, et al. Clinical and genetic heterogeneity of erythrokeratoderma variabilis. J Investig Dermatol. 2005;125:920–7. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15325069.

    Article  CAS  Google Scholar 

  28. van Steensel MAM, Oranje AP, van der Schroeff JG, Wagner A, van Geel M. The missense mutation G12D in connexin30.3 can cause both erythrokeratodermia variabilis of Mendes da Costa and progressive symmetric erythrokeratodermia of Gottron. Am J Med Genet A. 2009;149A:657–61. https://doi.org/10.1002/ajmg.a.32744.

    Article  CAS  Google Scholar 

  29. Ishida-Yamamoto A. Loricrin keratoderma: a novel disease entity characterized by nuclear accumulation of mutant loricrin. J Dermatol Sci. 2003;31:3–8. http://www.ncbi.nlm.nih.gov/pubmed/12615358.

    Article  CAS  Google Scholar 

  30. Bouadjar B, Benmazouzia S, Prud’homme JF, Cure S, Fischer J. Clinical and genetic studies of 3 large, consanguineous, Algerian families with Mal de Meleda. Arch Dermatol. 2000;136:1247–52. http://www.ncbi.nlm.nih.gov/pubmed/11030771.

    Article  CAS  Google Scholar 

  31. Schiller S, Seebode C, Hennies HC, Giehl K, Emmert S. Palmoplantar keratoderma (PPK): acquired and genetic causes of a not so rare disease. J Dtsch Dermatol Ges. 2014;12:781–8. https://doi.org/10.1111/ddg.12418.

    PubMed  Google Scholar 

  32. Sakiyama T, Kubo A. Hereditary palmoplantar keratoderma “clinical and genetic differential diagnosis.”. J Dermatol. 2016;43:264–74. http://www.ncbi.nlm.nih.gov/pubmed/26945534.

    Article  Google Scholar 

  33. Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein EH, et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet. 1998;20:366–9. http://www.nature.com/articles/ng1298_366.

    Article  CAS  Google Scholar 

  34. Macari F, Landau M, Cousin P, Mevorah B, Brenner S, Panizzon R, et al. Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet. 2000;67:1296–301. https://linkinghub.elsevier.com/retrieve/pii/S0002929707629577.

    Article  CAS  Google Scholar 

  35. Boyden LM, Craiglow BG, Zhou J, Hu R, Loring EC, Morel KD, et al. Dominant de novo mutations in GJA1 cause erythrokeratodermia variabilis et progressiva, without features of oculodentodigital dysplasia. J Investig Dermatol. 2015;135:1540–7. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15372833.

    Article  CAS  Google Scholar 

  36. Kaliannan K, Hamarneh SR, Economopoulos KP, Nasrin Alam S, Moaven O, Patel P, et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA. 2013;110:7003–8. https://doi.org/10.1073/pnas.1220180110.

    Article  Google Scholar 

  37. Redies C, Hertel N, Hübner CA. Cadherins and neuropsychiatric disorders. Brain Res. 2012;1470:130–44. https://linkinghub.elsevier.com/retrieve/pii/S0006899312010736.

    Article  CAS  Google Scholar 

  38. Gloushankova NA. Changes in regulation of cell-cell adhesion during tumor transformation. Biochemistry. 2008;73:742–50. http://www.ncbi.nlm.nih.gov/pubmed/18707582.

    PubMed  CAS  Google Scholar 

  39. El-Amraoui A, Petit C. Cadherins as targets for genetic diseases. Cold Spring Harb Perspect Biol. 2010;2:a003095. https://doi.org/10.1101/cshperspect.a003095.

    Article  Google Scholar 

  40. Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002;4:E101–8. http://www.nature.com/articles/ncb0402-e101.

    Article  CAS  Google Scholar 

  41. Fujimori T, Takeichi M. Disruption of epithelial cell-cell adhesion by exogenous expression of a mutated nonfunctional N-cadherin. Mol Biol Cell. 1993;4:37–47. http://www.ncbi.nlm.nih.gov/pubmed/8443408.

    Article  CAS  Google Scholar 

  42. Pontén FK, Schwenk JM, Asplund A, Edqvist PHD. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med. 2011;270:428–46.

    Article  CAS  Google Scholar 

  43. Yin L, Coelho SG, Ebsen D, Smuda C, Mahns A, Miller SA, et al. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp Dermatol. 2014;23:731–5. https://doi.org/10.1111/exd.12518.

    Article  Google Scholar 

  44. Del Bino S, Duval C, Bernerd F. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. Int J Mol Sci. 2018;19:2668. https://doi.org/10.3390/ijms19092668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to warmly acknowledge the patients and their families for their collaboration and all clinicians involved the care of the patients.

Funding

This work was supported by the Tunisian Ministry of Public Health, the Ministry of Higher Education and Scientific Research (LR16IPT05), and RARE-MED project (A* MIDEX Initiative d’excellence). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherine Charfeddine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charfeddine, C., Dallali, H., Abdessalem, G. et al. Identification of a CDH12 potential candidate genetic variant for an autosomal dominant form of transgrediens and progrediens palmoplantar keratoderma in a Tunisian family. J Hum Genet 65, 397–410 (2020). https://doi.org/10.1038/s10038-019-0711-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-019-0711-4

Search

Quick links