Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Association between brown adipose tissue and bone mineral density in humans

Abstract

Background

Brown adipose tissue (BAT) seems to play a role in bone morphogenesis. A negative association has been reported between BAT and bone mineral density (BMD) in women, but not in men. A panel of experts has recently published a set of recommendations for BAT assessment, and thus, to re-address previously reported associations is needed. This study aimed to investigate the association between cold-induced BAT 18F-Fluorodeoxyglucose (18F-FDG) uptake and BMD in young healthy adults.

Methods

Ninety-eight healthy adults (68 women; 22 ± 2.2 years old; 24.3 ± 4.5 kg/m2) cold-induced BAT was assessed by means of an 18F-FDG positron emission tomography-computed tomography (PET-CT) scan preceded by a personalized cold stimulation. The cold exposure consisted in 2 h in a mild cold room at 19.5–20 °C wearing a water perfused cooling vest set 4 °C above the individual shivering threshold. Total body and lumbar spine BMD were assessed by a whole-body DXA scan.

Results

We found no association between BMD and cold-induced BAT volume, mean, and maximal activity (all P > 0.1) in neither young and healthy men nor women. These results remained unchanged when adjusting by height, by body composition, and by objectively assessed physical activity. Sensitivity analyses using the criteria to quantify cold-induced BAT-related parameters applied in previous studies did not change the results.

Conclusions

In summary, our study shows that there is no association between cold-induced BAT and BMD in young healthy adults. Moreover, our data support the notion that previously shown associations between BAT and BMD in healthy non-calorically restricted individuals, could be driven by methodological issues related to BAT assessment and/or sample size limitations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  3. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMaFL, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  4. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  6. Palmer BF, Clegg DJ. Non-shivering thermogenesis as a mechanism to facilitate sustainable weight loss. Obes Rev 2017;18(8):819–31.

  7. Ruiz JR, Martinez-Tellez B, Sanchez-Delgado G, Osuna-Prieto FJ, Rensen PCN, Boon MR. Role of human brown fat in obesity, metabolism and cardiovascular disease: strategies to turn up the heat. Prog Cardiovasc Dis 2018;61(2):232–45.

  8. Green AL, Bagci U, Hussein S, Kelly PV, Muzaffar R, Neuschwander-Tetri BA, et al. Brown adipose tissue detected by PET/CT imaging is associated with less central obesity. Nucl Med Commun. 2017;38:629–35.

    Article  PubMed  Google Scholar 

  9. Nascimento EBM, Sparks LM, Divoux A, Van Gisbergen MW, Broeders EPM, Jörgensen JA et al. Genetic markers of brown adipose tissue identity and in vitro brown adipose tissue activity in humans. Obesity (Silver Spring) 2017;26(1):135–40.

  10. Iwen KA, Backhaus J, Cassens M, Waltl M, Hedesan OC, Merkel M, et al. Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metab. 2017;102:4226–34.

    Article  PubMed  Google Scholar 

  11. Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 2013;1:353–60.

    Article  CAS  PubMed  Google Scholar 

  12. Hoeke G, Kooijman S, Boon MR, Rensen PCN, Berbeé JFP. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118:173–82.

    Article  CAS  PubMed  Google Scholar 

  13. Blondin DP, Carpentier AC. The role of BAT in cardiometabolic disorders and aging. Best Pract Res Clin Endocrinol Metab. 2016;30:497–513.

    Article  CAS  PubMed  Google Scholar 

  14. Marlatt KL, Ravussin E. brown adipose tissue: an update on recent findings. Curr Obes Rep. 2017. https://doi.org/10.1007/s13679-017-0283-6.

  15. Devlin MJ. The ‘skinny’ on brown fat, obesity, and bone. Am J Phys Anthropol. 2015;156:98–115.

    Article  PubMed  Google Scholar 

  16. Lidell ME, Enerbäck S. Brown adipose tissue and bone. Int J Obes Suppl. 2015;5:S23–S27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, et al. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab. 2012;97:584–90.

    Article  CAS  Google Scholar 

  19. Lee P, Brychta RJ, Collins MT, Linderman J, Smith S, Herscovitch P, et al. Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women. Osteoporos Int. 2013;24:1513–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ponrartana S, Aggabao PC, Hu HH, Aldrovandi GM, Wren TAL, Gilsanz V. Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab. 2012;97:2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bredella MA, Gill CM, Rosen CJ, Klibanski A, Torriani M. Positive effects of brown adipose tissue on femoral bone structure. Bone. 2014;58:55–58.

    Article  CAS  PubMed  Google Scholar 

  22. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154:2687–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature. 2017;546:107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol—Endocrinol Metab. 2016;311:E530–E541.

    Article  PubMed  Google Scholar 

  25. Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, et al. Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol. 2007;170:620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cypess AM, Haft CR, Laughlin MR, Hu HH. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014;20:408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borja Martinez-Tellez, Kimberly J. Nahon, Guillermo Sanchez-Delgado, Gustavo Abreu-Vieira, Jose M. Llamas-Elvira, Floris H. P. van Velden, Lenka M. Pereira Arias-Bouda, Patrick C. N. Rensen, Mariëtte R. Boon, Jonatan R. Ruiz, (2018) The impact of using BARCIST 1.0 criteria on quantification of BAT volume and activity in three independent cohorts of adults. Scientific Reports 8 (1).

  30. Martinez-Tellez B, Sanchez-Delgado G, Boon MR, Rensen PCN, Ruiz JR. Activation and quantification of human brown adipose tissue: Methodological considerations for between studies comparisons: comment on: Hot heads & cool bodies: the conundrums of human BAT activity research. Eur J Intern Med. 2017;40:e19–e21.

    Article  PubMed  Google Scholar 

  31. Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Labayen I, Ortega FB, et al. Activating brown adipose tissue through exercise (ACTIBATE) in young adults: rationale, design and methodology. Contemp Clin Trials. 2015;45:416–25.

    Article  PubMed  Google Scholar 

  32. Martinez-Tellez B, Sanchez-Delgado G, Garcia-Rivero Y, Alcantara JMA, Martinez-Avila WD, Muñoz-Hernandez MV, et al. A new personalized cooling protocol to activate brown adipose tissue in young adults. Front Physiol. 2017;8:1–10.

    Article  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  34. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci USA. 2017;114:6–11.

    Article  CAS  Google Scholar 

  35. Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47:1821–45.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Misra M, Klibanski A. Anorexia nervosa and its associated endocrinopathy in young people. Horm Res Paediatr. 2016;85:147–57.

    Article  CAS  PubMed  Google Scholar 

  37. Ho-Pham LT, Nguyen UDT, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99:30–8.

    Article  CAS  PubMed  Google Scholar 

  38. van der Lans A a JJ, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD. Cold-activated brown adipose tissue in human adults—methodological issues. Am J Physiol Regul Integr Comp Physiol 2014; 31. https://doi.org/10.1152/ajpregu.00021.2014.

  39. Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96:192–9.

    Article  CAS  PubMed  Google Scholar 

  40. Au-Yong ITH, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes. 2009;58:2583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pace L, Nicolai E, D’Amico D, Ibello F, Della Morte AM, Salvatore B, et al. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol. 2011;13:1029–35.

    Article  PubMed  Google Scholar 

  42. Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res. 2018;33:211–20.

    Article  PubMed  Google Scholar 

  44. Füzéki E, Engeroff T, Banzer W. Health benefits of light-intensity physical activity: a systematic review of accelerometer data of the National Health and Nutrition Examination Survey (NHANES). Sport Med. 2017;47:1769–93.

    Article  Google Scholar 

  45. Frost HM. Bone?mass? and the?mechanostat?: a proposal. Anat Rec. 1987;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  46. Tobias JH, Steer CD, Mattocks CG, Riddoch C, Ness AR. Habitual levels of physical activity influence bone mass in 11-year-old children From the United Kingdom: findings from a large population-based cohort. J Bone Miner Res. 2006;22:101–9.

    Article  Google Scholar 

  47. Lehnig AC, Stanford KI. Exercise-induced adaptations to white and brown adipose tissue. J Exp Biol. 2018;221:jeb161570.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Styner M, Pagnotti GM, Galior K, Wu X, Thompson WR, Uzer G, et al. Exercise regulation of marrow fat in the setting of PPARγ agonist treatment in female C57BL/6 mice. Endocrinology. 2015;156:2753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow adipose tissue: skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front Endocrinol (Lausanne). 2017;8:1–12.

    Article  Google Scholar 

  50. Sponton CH, Kajimura S. Burning fat and building bone by FSH blockade. Cell Metab. 2017;26:285–7.

    Article  CAS  PubMed  Google Scholar 

  51. Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature. 2010;466:1110–4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fernandez-Marcos PJ, Auwerx J. pRb, a switch between bone and brown fat. Dev Cell. 2010;19:360–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gallego-Escuredo JM, Lamarca MK, Villarroya J, Domingo JC, Mateo MG, Gutierrez M, et al. High FGF21 levels are associated with altered bone homeostasis in HIV-1-infected patients. Metabolism. 2017;71:163–70.

    Article  CAS  PubMed  Google Scholar 

  54. Veldhuis-Vlug AG, Rosen CJ. Clinical implications of bone marrow adiposity. J Intern Med 2017. https://doi.org/10.1111/joim.12718.

  55. Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18:641–7.

    Article  CAS  PubMed  Google Scholar 

  56. Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, et al. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr. 2012;66:983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schilperoort M, Hoeke G, Kooijman S, Rensen PCN. Relevance of lipid metabolism for brown fat visualization and quantification. Curr Opin Lipidol. 2016;27:242–8.

    Article  CAS  PubMed  Google Scholar 

  58. Malouf J, DiGregorio S, Del Rio L, Torres F, Marin AM, Farrerons J, et al. Fat tissue measurements by dual-energy X-ray absorptiometry: cross-calibration of 3 different fan-beam instruments. J Clin Densitom. 2013;16:212–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Spanish Ministry of Economy and Competitiveness (DEP2016-79512-R), Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393), and Retos de la Sociedad (DEP2016-79512-R), Fondos Estructurales de la Unión Europea (FEDER), by the Spanish Ministry of Education (FPU 13/04365, FPU14/04172, and FPU 15/04059), by the Fundación Iberoamericana de Nutrición (FINUT), by the Redes temáticas de investigación cooperativa RETIC (Red SAMID RD16/0022), by AstraZeneca HealthCare Foundation and by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES) and Plan Propio de Investigación 2016 (Programa de Captación de Talento; and Programa de Captación de Talento—UGR Fellows. This study is part of a Ph.D. Thesis conducted in the Biomedicine Doctoral Studies of the University of Granada, Spain. We are grateful to Ms. Carmen Sainz-Quinn for assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Sanchez-Delgado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Parts of this study were presented as an oral presentation at the EMBO Workshop: Brown adipose tissue, Sitges, Spain, May 24–27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Delgado, G., Martinez-Tellez, B., Garcia-Rivero, Y. et al. Association between brown adipose tissue and bone mineral density in humans. Int J Obes 43, 1516–1525 (2019). https://doi.org/10.1038/s41366-018-0261-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0261-4

This article is cited by

Search

Quick links