Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

The nuclear retinoid‐related orphan receptor RORα controls adipose tissue inflammation in patients with morbid obesity and diabetes

Abstract

Background/aims

Inflammation governs adipose tissue (AT) dysfunction in obesity. Retinoic acid receptor-related orphan receptor alpha (RORα) is associated with inflammation and insulin resistance in animal studies, but its role in human obesity remains elusive. We investigated the expression and function of RORα on AT inflammation in patients with morbid obesity with/without diabetes.

Subjects/methods

We assessed RORα expression in paired biopsies of subcutaneous and omental AT from 41 patients (body mass index (BMI) 43.3 ± 0.8 kg/m2) during Roux-en-Y-gastric surgery and explored the functional consequences of pharmacological RORα blockade in AT ex vivo.

Results

RORα expression was significantly higher in omental AT than in subcutaneous AT (p = 0.03) and was positively associated with BMI (r = 0.344, p = 0.027) and homeostasis model assessment of insulin resistance (r = 0.319, p = 0.041). In ex vivo assays, IL-8/CXCL8 and MCP-1/CCL2 chemokine release was significantly higher in omental fat explants from diabetic patients than from non-diabetics and was significantly diminished by RORα blockade (p < 0.05). Inhibition of RORα improved protein kinase B signaling and decreased NF-κB activity in omental AT from patients with diabetes (p < 0.05). Under dynamic flow conditions, RORα blockade prevented mononuclear cell attachment to human dysfunctional endothelial cells.

Conclusions

RORα blockade represents a potential therapy to prevent AT dysfunction and inflammation associated with insulin resistance in human obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RORα expression in paired subcutaneous and omental adipose tissue from morbid obese subjects.
Fig. 2: RORα expression in morbidly obese subjects with or without diabetes.
Fig. 3: Chemokine release in adipose tissue explants from diabetic and non-diabetic morbid obese subjects.
Fig. 4: Effects of RORα inhibition on AKT and p65 NF-κB signaling in omental fat from diabetic and non-diabetic morbid obese patients.
Fig. 5: Effects of RORα inhibition on mononuclear cell-endothelium recruitment under physiological flow conditions.

Similar content being viewed by others

References

  1. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008;29:2959–71.

    Article  CAS  PubMed  Google Scholar 

  2. Booth A, Magnuson A, Foster M. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm Mol Biol Clin Investig. 2014;17:13–27.

    CAS  PubMed  Google Scholar 

  3. Mathieu P, Boulanger MC, Despres JP. Ectopic visceral fat: a clinical and molecular perspective on the cardiometabolic risk. Rev Endocr Metab Disord. 2014;15:289–98.

    Article  CAS  PubMed  Google Scholar 

  4. Hueso L, Ortega R, Selles F, Wu-Xiong NY, Ortega J, Civera M, et al. Upregulation of angiostatic chemokines IP-10/CXCL10 and I-TAC/CXCL11 in human obesity and their implication for adipose tissue angiogenesis. Int J Obes. 2018;42:1406–17.

    Article  CAS  Google Scholar 

  5. Collado A, Marques P, Escudero P, Rius C, Domingo E, Martinez-Hervás S, et al. Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders. Cardiovasc Res. 2018;114:1764–75.

    Article  CAS  PubMed  Google Scholar 

  6. Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118:1786–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zuriaga MA, Fuster JJ, Gokce N, Walsh K. Humans and mice display opposing patterns of “browning” gene expression in visceral and subcutaneous white adipose tissue depots. Front Cardiovasc Med. 2017;4:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7:410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27:1876–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature. 1996;379:736–9.

    Article  CAS  PubMed  Google Scholar 

  12. Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, et al. staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci USA. 1998;95:3960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirose T, Smith RJ, Jetten AM. ROR gamma: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem Biophys Res Commun. 1994;205:1976–83.

    Article  CAS  PubMed  Google Scholar 

  14. Besnard S, Heymes C, Merval R, Rodriguez M, Galizzi JP, Boutin JA, et al. Expression and regulation of the nuclear receptor RORalpha in human vascular cells. FEBS Lett. 2002;511:36–40.

    Article  CAS  PubMed  Google Scholar 

  15. Kang HS, Okamoto K, Takeda Y, Beak JY, Gerrish K, Bortner CD, et al. Transcriptional profiling reveals a role for RORalpha in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol Genom. 2011;43:818–28.

    Article  CAS  Google Scholar 

  16. Billon C, Sitaula S, Burris TP. Inhibition of RORalpha/gamma suppresses atherosclerosis via inhibition of both cholesterol absorption and inflammation. Mol Metab. 2016;5:997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pedro T, Martinez-Hervas S, Tormo C, Garcia-Garcia AB, Saez-Tormo G, Ascaso JF, et al. Oxidative stress and antioxidant enzyme values in lymphomonocytes after an oral unsaturated fat load test in familial hypercholesterolemic subjects. Transl Res. 2013;161:50–56.

    Article  CAS  PubMed  Google Scholar 

  18. Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM, et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity. 2008;16:932–7.

    Article  CAS  PubMed  Google Scholar 

  19. Rice DR, White AG, Leevy WM, Smith BD. Fluorescence imaging of interscapular brown adipose tissue in living mice. J Mater Chem B. 2015;3:1979–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  21. Ortega R, Collado A, Selles F, Gonzalez-Navarro H, Sanz MJ, Real JT, et al. SGLT-2 (sodium-glucose cotransporter 2) inhibition reduces ang II (angiotensin II)-induced dissecting abdominal aortic aneurysm in ApoE (apolipoprotein E) knockout mice. Arterioscler Thromb Vasc Biol. 2019;39:1614–28.

    Article  CAS  PubMed  Google Scholar 

  22. Furio E, García-Fuster MJ, Redon J, Marques P, Ortega R, Sanz MJ, et al. CX3CR1/CX3CL1 axis mediates platelet-leukocyte adhesion to arterial endothelium in younger patients with a history of idiopathic deep vein thrombosis. Thromb Haemost. 2018;118:562–71.

    Article  PubMed  Google Scholar 

  23. Cignarelli A, Genchi VA, Perrini S, Natalicchio A, Laviola L, Giorgino F. Insulin and insulin receptors in adipose tissue development. Int J Mol Sci. 2019;20:759–79.

    Article  CAS  PubMed Central  Google Scholar 

  24. Carlsen H, Haugen F, Zadelaar S, Kleemann R, Kooistra T, Drevon CA, et al. Diet-induced obesity increases NF-kappaB signaling in reporter mice. Genes Nutr. 2009;4:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Investig. 2006;116:1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Catalan V, Gomez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg. 2007;17:1464–74.

    Article  PubMed  Google Scholar 

  27. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  28. Cartier A, Cote M, Bergeron J, Almeras N, Tremblay A, Lemieux I, et al. Plasma soluble tumour necrosis factor-alpha receptor 2 is elevated in obesity: specific contribution of visceral adiposity. Clin Endocrinol. 2010;72:349–57.

    Article  CAS  Google Scholar 

  29. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes. 2009;33:54–66.

    Article  CAS  Google Scholar 

  30. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124:67–76.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Chen Y, Zhang J, Liu Y, Zhang Y, Su Z. Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress. J Biol Chem. 2017;292:13959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lau P, Fitzsimmons RL, Pearen MA, Watt MJ, Muscat GE. Homozygous staggerer (sg/sg) mice display improved insulin sensitivity and enhanced glucose uptake in skeletal muscle. Diabetologia. 2011;54:1169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Auclair M, Roblot N, Capel E, Fève B, Antoine B. Pharmacological modulation of RORα controls the fat browning, adaptive thermogenesis and body weight in mice. Am J Physiol Endocrinol Metab. 2021;320:E219–E33.

    Article  CAS  PubMed  Google Scholar 

  34. Monnier C, Auclair M, Le Cam G, Garcia MP, Antoine B. The nuclear retinoid-related orphan receptor RORα controls circadian thermogenic programming in white fat depots. Physiol Rep. 2018;6:e13678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig. 2006;116:1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Investig. 2006;116:115–24.

    Article  CAS  PubMed  Google Scholar 

  37. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G, et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab. 2008;93:3215–21.

    Article  CAS  PubMed  Google Scholar 

  38. Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol. 2008;28:1897–908.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar N, Kojetin DJ, Solt LA, Kumar KG, Nuhant P, Duckett DR, et al. Identification of SR3335 (ML-176): a synthetic RORalpha selective inverse agonist. ACS Chem Biol. 2011;6:218–22.

    Article  CAS  PubMed  Google Scholar 

  40. Solt LA, Banerjee S, Campbell S, Kamenecka TM, Burris TP. ROR inverse agonist suppresses insulitis and prevents hyperglycemia in a mouse model of type 1 diabetes. Endocrinology. 2015;156:869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barbarroja N, López-Pedrera R, Mayas MD, García-Fuentes E, Garrido-Sánchez L, Macías-González M, et al. The obese healthy paradox: is inflammation the answer? Biochem J. 2010;430:141–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kadiri S, Auclair M, Capeau J, Antoine B. Depot-specific response of adipose tissue to diet-induced inflammation: the retinoid-related orphan receptor alpha (RORalpha) involved? Obesity. 2017;25:1948–55.

    Article  CAS  PubMed  Google Scholar 

  43. Lau P, Fitzsimmons RL, Raichur S, Wang SC, Lechtken A, Muscat GE. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J Biol Chem. 2008;283:18411–21.

    Article  CAS  PubMed  Google Scholar 

  44. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–8.

    Article  CAS  PubMed  Google Scholar 

  45. Tourniaire F, Romier-Crouzet B, Lee JH, Marcotorchino J, Gouranton E, Salles J, et al. Chemokine expression in inflamed adipose tissue is mainly mediated By NF-κB. PLoS ONE. 2013;8:e66515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol. 2003;23:5651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engin A. Endothelial dysfunction in obesity. Adv Exp Med Biol. 2017;960:345–79.

    Article  CAS  PubMed  Google Scholar 

  48. Marques P, Collado A, Martinez-Hervás S, Domingo E, Benito E, Piqueras L, et al. Systemic Inflammation in MetabolicSyndrome: Increased Platelet and Leukocyte Activation, and Key Role of CX3CL1/CX3CR1 and CCL2/CCR2 Axes in Arterial Platelet-Proinflammatory Monocyte Adhesion. J Clin Med. 2019;8:708.

    Article  PubMed Central  CAS  Google Scholar 

  49. Weber KS, von Hundelshausen P, Clark-Lewis I, Weber PC, Weber C. Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur J Immunol. 1999;29:700–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Carlos III Health Institute/ Spanish Ministry of Health (PI18/00209, PI15/00082) and the Spanish Ministry of Economy and Competitiveness (SAF2017-89714-R), Generalitat Valenciana (grants Gent T CDEI-04/20-A and AICO/2019/250) and the European Regional Development Fund (FEDER). Hueso L holds a predoctoral grant from Carlos III Health Institute (FI19/00033). Piqueras L is under a “Plan GenT” contract (CDEI-04/20-A) (Conselleria de Sanidad, Valencia, Spain). The authors gratefully acknowledge the valuable collaboration of all the members of the multidisciplinary research Team of CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, RO, and LH; formal analysis, RO, LH, MC, MJS, LP, and JTR; funding acquisition, LP, MJS, and JTR; investigation, RO, LH; methodology, RO, LH, EB, MC, JO, MJS, JTR, and LP; supervision, LP, MJS, and JTR; conceptualization and writing-original draft, LP; writing-review & editing, RO, LH, EB, MC, JO, MJS, JTR, and LP. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Maria-Jesus Sanz, José T. Real or Laura Piqueras.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, R., Hueso, L., Benito, E. et al. The nuclear retinoid‐related orphan receptor RORα controls adipose tissue inflammation in patients with morbid obesity and diabetes. Int J Obes 45, 1369–1381 (2021). https://doi.org/10.1038/s41366-021-00787-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00787-5

This article is cited by

Search

Quick links