Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Personal care product use as a predictor of urinary concentrations of certain phthalates, parabens, and phenols in the HERMOSA study

Abstract

Use of personal care products, such as makeup, soaps, and sunscreen, may expose adolescent girls to potential endocrine disruptors, including phthalates, parabens, and other phenols. We evaluated the relationship between recent self-reported personal care product use and concentrations for urinary metabolites of phthalates, parabens, triclosan, and benzophenone-3 (BP-3) in 100 Latina adolescents. Girls who reported using makeup every day vs. rarely/never had higher urinary concentrations of monoethyl phthalate (MEP) (102.2 ng/mL vs. 52.4 ng/mL, P-value: 0.04), methyl paraben (MP) (120.5 ng/mL vs. 13.4 ng/mL, P-value < 0.01), and propyl paraben (PP) (60.4 ng/mL vs. 2.9 ng/mL, P-value < 0.01). Girls who reported recent use of specific makeup products, including foundation, blush, and mascara, had higher urinary concentrations of MEP, mono-n-butyl phthalate (MBP), MP, and PP. Use of Colgate Total toothpaste was associated with 86.7% higher urinary triclosan concentrations. Use of sunscreen was associated with 57.8% higher urinary concentrations of BP-3. Our findings suggest that personal care product use is associated with higher exposure to certain phthalates, parabens, and other phenols in urine. This may be especially relevant in adolescent girls who have high use of personal care products during a period of important reproductive development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kelley KE, Hernández-Díaz S, Chaplin EL, Hauser RB, Mitchell AA. Identification of phthalates in medications and dietary supplement formulations in the United States and Canada. 2011.

  2. Koniecki D, Wang R, Moody RP, Zhu J. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res. 2011;111:329–36.

    CAS  PubMed  Google Scholar 

  3. Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect . 2013;121:473.

    PubMed  PubMed Central  Google Scholar 

  4. Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol. 2013;47:14442–9.

    CAS  PubMed  Google Scholar 

  5. Program NT. Butylparaben [CAS No. 94-26-8] Review of toxicological literature. 2005.

  6. Food U, Administration D. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record. 2013.

  7. Dann AB, Hontela A. Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol. 2011;31:285–311.

    CAS  PubMed  Google Scholar 

  8. Health Nlo. Household products database. Look up CAS. 2007.

  9. Rastogi SC. UV filters in sunscreen products−a survey. Contact Dermat. 2002;46:348–51.

    CAS  Google Scholar 

  10. Suzuki T, Kitamura S, Khota R, Sugihara K, Fujimoto N, Ohta S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol Appl Pharmacol. 2005;203:9–17.

    CAS  PubMed  Google Scholar 

  11. Krause M, Klit A, Blomberg Jensen M, Søeborg T, Frederiksen H, Schlumpf M, et al. Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV‐filters. Int J Androl. 2012;35:424–36.

    CAS  PubMed  Google Scholar 

  12. Shen O, Du G, Sun H, Wu W, Jiang Y, Song L, et al. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicol Lett. 2009;191:9–14.

    CAS  PubMed  Google Scholar 

  13. Karpuzoglu E, Holladay SD, Gogal RM Jr. Parabens: potential impact of low-affinity estrogen receptor binding chemicals on human health. J Toxicol Environ Health Part B. 2013;16:321–35.

    CAS  Google Scholar 

  14. Witorsch RJ. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit Rev Toxicol. 2014;44:535–55.

    CAS  PubMed  Google Scholar 

  15. Organization WH. Diethyl phthalate. Concise international chemical assessment document 52. Geneva, Switzerland: World Health Organization; 2003. http://www.inchem.org/documents/cicads/cicads/cicad52.htm

    Google Scholar 

  16. Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, et al. The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci. 2009;107:56–64.

    CAS  PubMed  Google Scholar 

  17. Mylchreest E, Sar M, Cattley RC, Foster PM. Disruption of androgen-regulated male reproductive development by di (n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol. 1999;156:81–95.

    CAS  PubMed  Google Scholar 

  18. Gray LE, Ostby J, Furr J, Price M, Veeramachaneni DR, Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci. 2000;58:350–65.

    CAS  PubMed  Google Scholar 

  19. Foster P. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29:140–7.

    CAS  PubMed  Google Scholar 

  20. Jönsson BA, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology. 2005;16:487–93.

    PubMed  Google Scholar 

  21. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32:261–7.

    CAS  PubMed  Google Scholar 

  22. Colón I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect. 2000;108:895.

    PubMed  PubMed Central  Google Scholar 

  23. Schoeters G, Den Hond E, Dhooge W, Van Larebeke N, Leijs M. Endocrine disruptors and abnormalities of pubertal development. Basic Clin Pharmacol Toxicol. 2008;102:168–75.

    CAS  PubMed  Google Scholar 

  24. Ormond G, Nieuwenhuijsen MJ, Nelson P, Toledano MB, Iszatt N, Geneletti S, et al. Endocrine disruptors in the workplace, hair spray, folate supplementation, and risk of hypospadias: case-control study. Environ Health Perspect. 2009;117:303.

    PubMed  Google Scholar 

  25. Jacobson-Dickman E, Lee MM. The influence of endocrine disruptors on pubertal timing. Curr Opin Endocrinol Diabetes Obes. 2009;16:25–30.

    CAS  PubMed  Google Scholar 

  26. Wolff MS, Teitelbaum SL, Pinney SM, Windham G, Liao L, Biro F, et al. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118:1039–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mustafa M, Bakhiet M, Wondimu B, Modeer T. Effect of triclosan on interferon‐γ production and major histocompatibility complex class II expression in human gingival fibroblasts. J Clin Periodontol. 2000;27:733–7.

    CAS  PubMed  Google Scholar 

  28. Xu H, Shao X, Zhang Z, Zou Y, Wu X, Yang L. Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol Environ Saf. 2013;93:39–44.

    CAS  PubMed  Google Scholar 

  29. Anderson SE, Franko J, Kashon ML, Anderson KL, Hubbs AF, Lukomska E, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma. Toxicol Sci. 2012;132:13.

  30. Anderson SE, Meade BJ, Long CM, Lukomska E, Marshall NB Investigations of immunotoxicity and allergic potential induced by topical application of triclosan in mice. J Immunotoxicol. 2015;13:1–8.

  31. Marshall NB, Lukomska E, Long CM, Kashon ML, Sharpnack DD, Nayak AP, et al. Triclosan induces thymic stromal lymphopoietin in skin promoting Th2 allergic responses. Toxicol Sci. 2015;147:127–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwon J-T, Yang Y-S, Kang M-S, Seo G-B, Lee DH, Yang M-J, et al. Pulmonary toxicity screening of triclosan in rats after intratracheal instillation. J Toxicol Sci. 2013;38:471–5.

    CAS  PubMed  Google Scholar 

  33. Kato T, Tada‐Oikawa S, Takahashi K, Saito K, Wang L, Nishio A, et al. Endocrine disruptors that deplete glutathione levels in APC promote Th2 polarization in mice leading to the exacerbation of airway inflammation. Eur J Immunol. 2006;36:1199–209.

    CAS  PubMed  Google Scholar 

  34. Ait Bamai Y, Shibata E, Saito I, Araki A, Kanazawa A, Morimoto K, et al. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci Total Environ. 2014;485-486:153–63.

    CAS  PubMed  Google Scholar 

  35. Beko G, Callesen M, Weschler CJ, Toftum J, Langer S, Sigsgaard T, et al. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. Environ Res. 2015;137:432–9.

    CAS  PubMed  Google Scholar 

  36. Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. Journal Allergy Clin Immunol. 2012;130:453–60.

    CAS  Google Scholar 

  37. Spanier AJ, Fausnight T, Camacho TF, Braun JM (eds). The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. Allergy and Asthma Proceedings. OceanSide Publications, Inc. East Providence, Rhode Island 2014.

  38. Clayton R, Erin M, Todd M, Dowd JB, Aiello AE. The impact of bisphenol a and triclosan on immune parameters in the U. S. population, NHANES 2003 a 2006. Environ Health Perspect. 2010;119:390–6.

    PubMed  Google Scholar 

  39. Bertelsen RJ, Carlsen KC, Calafat AM, Hoppin JA, Haland G, Mowinckel P, et al. Urinary biomarkers for phthalates associated with asthma in Norwegian children. Environ Health Perspect. 2013;121:251–6.

    PubMed  Google Scholar 

  40. Bertelsen RJ, Longnecker MP, Løvik M, Calafat AM, Carlsen KH, London SJ, et al. Triclosan exposure and allergic sensitization in Norwegian children. Allergy. 2013;68:84–91.

    CAS  PubMed  Google Scholar 

  41. Ku HY, Su PH, Wen HJ, Sun HL, Wang CJ, Chen HY, et al. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a taiwanese birth cohort. PLoS ONE. 2015;10:e0123309.

    PubMed  PubMed Central  Google Scholar 

  42. Lee H-R, Hwang K-A, Nam K-H, Kim H-C, Choi K-C. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol. 2014;27:834–42.

    CAS  PubMed  Google Scholar 

  43. Olaniyan L, Mkwetshana N, Okoh A. Triclosan in water, implications for human and environmental health. SpringerPlus . 2016;5:1639.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Paul KB, Hedge JM, Bansal R, Zoeller RT, Peter R, DeVito MJ, et al. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology. 2012;300:31–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Geens T, Dirtu AC, Dirinck E, Malarvannan G, Van Gaal L, Jorens PG, et al. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environ Int. 2015;76:98–105.

    CAS  PubMed  Google Scholar 

  46. Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res. 2012;19:1044–65.

    CAS  Google Scholar 

  47. Fang J-L, Stingley RL, Beland FA, Harrouk W, Lumpkins DL, Howard P. Occurrence, efficacy, metabolism, and toxicity of triclosan. J Environ Sci Health, Part C. 2010;28:147–71.

    CAS  Google Scholar 

  48. Zhou Y, Wang H, Chen Y, Jiang Q. Environmental and food contamination with plasticisers in China. Lancet. 2011;378:e4.

    PubMed  Google Scholar 

  49. Bazin I, Gadal A, Touraud E, Roig B. Hydroxy benzoate preservatives (parabens) in the environment: data for environmental toxicity assessment. Xenobiotics in the urban water cycle: Springer. 2010; pp 245–57.

  50. Kim S, Choi K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. Environ Int. 2014;70:143–57.

    CAS  PubMed  Google Scholar 

  51. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003;37:4543-4553.

  52. Cirillo T, Fasano E, Esposito F, Prete ED, Cocchieri RA. Study on the influence of temperature, storage time and packaging type on di-n-butylphthalate and di (2-ethylhexyl) phthalate release into packed meals. Food Addit Contam. 2013;30:403–11.

    CAS  Google Scholar 

  53. Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010. Environ Health Perspect. 2014;122:235–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006. Environ Health Perspect. 2010;118:679–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Han C, Lim YH, Hong YC. Ten-year trends in urinary concentrations of triclosan and benzophenone-3 in the general U.S. population from 2003 to 2012. Environ Pollut. 2016;208:803–10.

    CAS  PubMed  Google Scholar 

  56. Centers for Disease Control and Prevention. Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables, February 2015. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. http://www.cdc.gov/exposurereport/. 2015.

  57. Environmental Working Group. Teen girls’ body burden of hormone-altering cosmetics chemicals: Environmental Working Group. http://www.ewg.org/book/export/html/26953. 2008.

  58. CDC. National Health and Nutrition Examination Survey Data. US Department of Health and Human Services. 2013–2014.

  59. Parlett LE, Calafat AM, Swan SH. Women’s exposure to phthalates in relation to use of personal care products. J Expo Sci Environ Epidemiol. 2013;23:197–206.

    CAS  PubMed  Google Scholar 

  60. Buckley JP, Palmieri RT, Matuszewski JM, Herring AH, Baird DD, Hartmann KE, et al. Consumer product exposures associated with urinary phthalate levels in pregnant women. J Expo Sci Environ Epidemiol. 2012;22:468–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Braun JM, Just AC, Williams PL, Smith KW, Calafat AM, Hauser R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. Journal Expo Sci Environ Epidemiol. 2014;24:459–66.

    CAS  Google Scholar 

  62. Duty SM, Ackerman RM, Calafat AM, Hauser R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ Health Perspect. 2005;113:1530–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Romero-Franco M, Hernandez-Ramirez RU, Calafat AM, Cebrian ME, Needham LL, Teitelbaum S, et al. Personal care product use and urinary levels of phthalate metabolites in Mexican women. Environ Int. 2011;37:867–71.

    CAS  PubMed  Google Scholar 

  64. Lewis RC, Meeker JD, Peterson KE, Lee JM, Pace GG, Cantoral A, et al. Predictors of urinary bisphenol A and phthalate metabolite concentrations in Mexican children. Chemosphere. 2013;93:2390–8.

    CAS  PubMed  Google Scholar 

  65. Sathyanarayana S, Karr CJ, Lozano P, Brown E, Calafat AM, Liu F, et al. Baby care products: possible sources of infant phthalate exposure. Pediatrics. 2008;121:e260–8.

    PubMed  Google Scholar 

  66. Cosmetics CfS. Market Shift: the story of the compact for safe cosmetics and the growth in demand for safe cosmetics. 2011.

  67. Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, et al. Reducing Phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect. 2016.

  68. Madrigal DS, Minkler M, Parra KL, Mundo C, Gonzalez JE, Jimenez R, et al. Improving Latino Youths’ environmental health literacy and leadership skills through participatory research on chemical exposures in cosmetics: the HERMOSA Study. International quarterly of community health education. 2016.

  69. Kato K, Silva MJ, Needham LL, Calafat AM. Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry. Anal Chem. 2005;77:2985–91.

    CAS  PubMed  Google Scholar 

  70. Gavin QW, Ramage RT, Waldman JM, She J. Development of HPLC-MS/MS method for the simultaneous determination of environmental phenols in human urine. Int J Environ Anal Chem. 2014;94:168–82.

    CAS  Google Scholar 

  71. Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5:46–51.

    CAS  Google Scholar 

  72. Molitor J, Papathomas M, Jerrett M, Richardson S. Bayesian profile regression with an application to the National Survey of Children’s Health. Biostatistics. 2010;11:484–98.

    PubMed  Google Scholar 

  73. Coker E, Liverani S, Ghosh JK, Jerrett M, Beckerman B, Li A, et al. Multi-pollutant exposure profiles associated with term low birth weight in Los Angeles County. Environ Int. 2016;91:1–13.

    CAS  PubMed  Google Scholar 

  74. Locke B, Jachowicz J. Fading of artificial hair colour and its prevention by photofilters. Int J Cosmet Sci. 2006;28:231–2.

    CAS  PubMed  Google Scholar 

  75. Bernhardt P, Giesen M, Hollenberg D, Hubbuch M, Kalhöfer V, Maier H, et al. UV filters for hair protection. Int J Cosmet Sci. 1993;15:181–99.

    CAS  PubMed  Google Scholar 

  76. Meeker JD, Cantonwine DE, Rivera-Gonzalez LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol.2013;47:3439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Just AC, Adibi JJ, Rundle AG, Calafat AM, Camann DE, Hauser R, et al. Urinary and air phthalate concentrations and self-reported use of personal care products among minority pregnant women in New York city. J Expo Sci Environ Epidemiol. 2010;20:625–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kessler R. More than cosmetic changes: taking stock of personal care product safety. Environ Health Perspect. 2015;123:A120.

    PubMed  PubMed Central  Google Scholar 

  79. Kwapniewski R, Kozaczka S, Hauser R, Silva MJ, Calafat AM, Duty SM. Occupational exposure to dibutyl phthalate among manicurists. J Occup Environ Med. 2008;50:705–11.

    CAS  PubMed  Google Scholar 

  80. Liao C, Kannan K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Arch Environ Contam Toxicol. 2014;67:50–9.

    CAS  PubMed  Google Scholar 

  81. Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect. 2012;120:935.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schettler T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9.

    CAS  PubMed  Google Scholar 

  83. Aurela B, Kulmala H, Soderhjelm L. Phthalates in paper and board packaging and their migration into Tenax and sugar. Food Addit Contam. 1999;16:571–7.

    CAS  PubMed  Google Scholar 

  84. Colacino JA, Harris TR, Schecter A. Dietary intake is associated with phthalate body burden in a nationally representative sample. Environ Health Perspect. 2010;118:998–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kelley KE, Calafat AM, Mitchell AA, Hauser RB, Hernandez-Diaz S. Medications as a potential source of exposure to phthalates in the US population. 2008.

  86. Biedermann-Brem S, Biedermann M, Pfenninger S, Bauer M, Altkofer W, Rieger K, et al. Plasticizers in PVC toys and childcare products: What succeeds the phthalates? Market survey 2007. Chromatographia. 2008;68:227–34.

    CAS  Google Scholar 

  87. Liao C, Kannan K. Concentrations and composition profiles of parabens in currency bills and paper products including sanitary wipes. Sci Total Environ. 2014;475:8–15.

    CAS  PubMed  Google Scholar 

  88. Soni MG, Carabin IG, Burdock GA. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol: Int Journal Publ Br Ind Biol Res Assoc. 2005;43:985–1015.

    CAS  Google Scholar 

  89. CDC. Fourth Report on Human Exposure to Environmental Chemicals. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2009.

  90. Gonzalez H, Farbrot A, Larko O, Wennberg AM. Percutaneous absorption of the sunscreen benzophenone-3 after repeated whole-body applications, with and without ultraviolet irradiation. Br J Dermatol. 2006;154:337–40.

    CAS  PubMed  Google Scholar 

  91. Janjua NR, Frederiksen H, Skakkebæk NE, Wulf HC, Andersson AM. Urinary excretion of phthalates and paraben after repeated whole‐body topical application in humans. Int J Androl. 2008;31:118–30.

    CAS  PubMed  Google Scholar 

  92. Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A. 2006;69:1861–73.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by California Breast Cancer Research Program grant 18BB-1800 and NIEHS grant 1R21ES024909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim G. Harley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, K.P., Kogut, K.R., Bradman, A. et al. Personal care product use as a predictor of urinary concentrations of certain phthalates, parabens, and phenols in the HERMOSA study. J Expo Sci Environ Epidemiol 29, 21–32 (2019). https://doi.org/10.1038/s41370-017-0003-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-017-0003-z

Keywords

Search

Quick links