Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL

Abstract

Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex are frequently found in different human cancers. While the tumor suppressor function of this complex is widely established in solid tumors, its role in hematologic malignancies is largely unknown. Recurrent point mutations in BCL7A gene, encoding a subunit of the SWI/SNF complex, have been reported in diffuse large B-cell lymphoma (DLBCL), but their functional impact remains to be elucidated. Here we show that BCL7A often undergoes biallelic inactivation, including a previously unnoticed mutational hotspot in the splice donor site of intron one. The splice site mutations render a truncated BCL7A protein, lacking a portion of the amino-terminal domain. Moreover, restoration of wild-type BCL7A expression elicits a tumor suppressor-like phenotype in vitro and in vivo. In contrast, splice site mutations block the tumor suppressor function of BCL7A by preventing its binding to the SWI/SNF complex. We also show that BCL7A restoration induces transcriptomic changes in genes involved in B-cell activation. In addition, we report that SWI/SNF complex subunits harbor mutations in more than half of patients with germinal center B-cell (GCB)-DLBCL. Overall, this work demonstrates the tumor suppressor function of BCL7A in DLBCL, and highlights that the SWI/SNF complex plays a relevant role in DLBCL pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutational patterns in BCL7A in DLBCL samples.
Fig. 2: BCL7A is targeted by AID.
Fig. 3: Loss of BCL7A_Nt domain abolishes BCL7A binding to the SWI/SNF complex.
Fig. 4: In vitro and in vivo analyses show that restoration of BCL7A drives a tumor suppressor-like phenotype.
Fig. 5: RNA-seq differential expression analyses on the OCI-LY1 and VAL cell lines after overexpression of wild-type BCL7A vs. overexpression of Δ27-BCL7A.

Similar content being viewed by others

Data availability

RNA-seq data discussed in this publication is accessible through Gene Expression Omnibus under accession number GSE149277. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014795. Data will be available immediately following publication, no end date. All other data and processing code are available from the corresponding author upon reasonable request.

References

  1. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    CAS  PubMed  Google Scholar 

  2. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109:3879–84.

    CAS  PubMed  Google Scholar 

  3. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43:830–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood. 2013;122:1256–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang J, Grubor V, Love CL, Banerjee A, Richards KL, Mieczkowski PA, et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2013;110:1398–403.

    CAS  PubMed  Google Scholar 

  6. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    CAS  PubMed  Google Scholar 

  7. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198:851–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    PubMed  Google Scholar 

  9. Thieblemont C, Briere J, Mounier N, Voelker HU, Cuccuini W, Hirchaud E, et al. The germinal center/activated B-cell subclassification has a prognostic impact for response to salvage therapy in relapsed/refractory diffuse large B-cell lymphoma: a bio-CORAL study. J Clin Oncol. 2011;29:4079–87.

    PubMed  Google Scholar 

  10. Lunning MA, Green MR. Mutation of chromatin modifiers; an emerging hallmark of germinal center B-cell lymphomas. Blood Cancer J. 2015;5:e361.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447.

    PubMed  PubMed Central  Google Scholar 

  12. Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7:437–47.

    CAS  PubMed  Google Scholar 

  13. Wang X, Lee RS, Alver BH, Haswell JR, Wang S, Mieczkowski J, et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet. 2017;49:289–95.

    CAS  PubMed  Google Scholar 

  14. Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J, et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat. 2008;29:617–22.

    CAS  PubMed  Google Scholar 

  15. Medina PP, Sanchez-Cespedes M. Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics. 2008;3:64–8.

    PubMed  Google Scholar 

  16. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994;79:119–30.

    CAS  PubMed  Google Scholar 

  19. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA. 2000;97:13796–800.

    CAS  PubMed  Google Scholar 

  20. Wang X, Werneck MB, Wilson BG, Kim HJ, Kluk MJ, Thom CS, et al. TCR-dependent transformation of mature memory phenotype T cells in mice. J Clin Investig. 2011;121:3834–45.

    CAS  PubMed  Google Scholar 

  21. Schiaffino-Ortega S, Balinas C, Cuadros M, Medina PP. SWI/SNF proteins as targets in cancer therapy. J Hematol Oncol. 2014;7:81.

    PubMed  PubMed Central  Google Scholar 

  22. Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature. 1999;400:784–7.

    CAS  PubMed  Google Scholar 

  23. Kaeser MD, Aslanian A, Dong MQ, Yates JR 3rd, Emerson BM. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem. 2008;283:32254–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramos-Medina R, Montes-Moreno S, Maestre L, Canamero M, Rodriguez-Pinilla M, Martinez-Torrecuadrada J, et al. BCL7A protein expression in normal and malignant lymphoid tissues. Br J Haematol. 2013;160:106–9.

    CAS  PubMed  Google Scholar 

  25. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171:481–94 e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129:473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato L, Begum NA, Burroughs AM, Doi T, Kawai J, Daub CO, et al. Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes. Proc Natl Acad Sci USA. 2012;109:2479–84.

    CAS  PubMed  Google Scholar 

  29. Khodabakhshi AH, Morin RD, Fejes AP, Mungall AJ, Mungall KL, Bolger-Munro M, et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget. 2012;3:1308–19.

    PubMed  PubMed Central  Google Scholar 

  30. Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood. 2019;133:1313–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    CAS  PubMed  Google Scholar 

  32. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412:341–6.

    CAS  PubMed  Google Scholar 

  33. Perez-Duran P, Belver L, de Yebenes VG, Delgado P, Pisano DG, Ramiro AR. UNG shapes the specificity of AID-induced somatic hypermutation. J Exp Med. 2012;209:1379–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Alvarez-Prado AF, Perez-Duran P, Perez-Garcia A, Benguria A, Torroja C, de Yebenes VG, et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med. 2018;215:761–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rada C, Di Noia JM, Neuberger MS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell. 2004;16:163–71.

    CAS  PubMed  Google Scholar 

  36. Methot SP, Di Noia JM. Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 2017;133:37–87.

    CAS  PubMed  Google Scholar 

  37. Rogozin IB, Kolchanov NA. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992;1171:11–8.

    CAS  PubMed  Google Scholar 

  38. Jadayel DM, Osborne LR, Coignet LJ, Zani VJ, Tsui LC, Scherer SW, et al. The BCL7 gene family: deletion of BCL7B in Williams syndrome. Gene. 1998;224:35–44.

    CAS  PubMed  Google Scholar 

  39. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    PubMed  PubMed Central  Google Scholar 

  40. Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol. 2005;6:1054–60.

    CAS  PubMed  Google Scholar 

  41. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood. 2010;116:5247–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chae YS, Kim H, Kim D, Lee H, Lee HO. Cell density-dependent acetylation of DeltaNp63alpha is associated with p53-dependent cell cycle arrest. FEBS Lett. 2012;586:1128–34.

    CAS  PubMed  Google Scholar 

  43. Tan SH, Yam AW, Lawton LN, Wong RW, Young RA, Look AT, et al. TRIB2 reinforces the oncogenic transcriptional program controlled by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:959–62.

    CAS  PubMed  Google Scholar 

  44. Hou Z, Guo K, Sun X, Hu F, Chen Q, Luo X, et al. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol Cancer. 2018;17:172.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hodges C, Kirkland JG, Crabtree GR. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb Perspect Med. 2016;6:a026930.

    PubMed  PubMed Central  Google Scholar 

  46. Michel BC, D’Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20:1410–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zani VJ, Asou N, Jadayel D, Heward JM, Shipley J, Nacheva E, et al. Molecular cloning of complex chromosomal translocation t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphoma cell line defines a new gene (BCL7A) with homology to caldesmon. Blood 1996;87:3124–34.

    CAS  PubMed  Google Scholar 

  49. Nacheva E, Fischer P, Karpas A, Sherrington P, Hayhoe FG, Manolov G, et al. Complex translocation t(8;12;14) in a cell line derived from a child with nonendemic Burkitt-type acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1987;28:145–53.

    CAS  PubMed  Google Scholar 

  50. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96:808–22.

    CAS  PubMed  Google Scholar 

  51. Weinhold N, Ashby C, Rasche L, Chavan SS, Stein C, Stephens OW, et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood. 2016;128:1735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar S, Warrell J, Li S, McGillivray PD, Meyerson W, Salichos L, et al. Passenger mutations in 2500 cancer genomes: overall molecular functional impact and consequences. 2018:280446. https://www.biorxiv.org/content/10.1101/280446v1.full.

  53. Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272–88 e20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Panea RI, Love CL, Shingleton JR, Reddy A, Bailey JA, Moormann AM, et al. The whole-genome landscape of Burkitt lymphoma subtypes. Blood. 2019;134:1598–607.

    PubMed  PubMed Central  Google Scholar 

  55. Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB, et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014;6:130–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005;23:3886–96.

    PubMed  Google Scholar 

  58. Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma. Blood. 2018;131:2307–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Beguelin W, Teater M, Gearhart MD, Calvo Fernandez MT, Goldstein RL, Cardenas MG, et al. EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell. 2016;30:197–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q, et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell. 2005;7:445–55.

    CAS  PubMed  Google Scholar 

  61. Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23:677–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet. 2017;49:296–302.

    CAS  PubMed  Google Scholar 

  63. Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SM, et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet. 2017;49:213–22.

    CAS  PubMed  Google Scholar 

  64. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Berg T, Thoene S, Yap D, Wee T, Schoeler N, Rosten P, et al. A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. Blood. 2014;123:3914–24.

    CAS  PubMed  Google Scholar 

  66. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231–8.

    CAS  PubMed  Google Scholar 

  67. Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med. 2015;21:1491–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mittal P, Roberts CWM. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020. https://doi.org/10.1038/s41571-020-0357-3.

  69. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13:199–212.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PPM laboratory is supported by the Deutsche José Carreras Leukämie-Stiftung, Becas Leonardo (BBVA Foundation), the Ministry of Economy of Spain (SAF2015-67919-R), Consejería de Salud de la Junta de Andalucía (PI-0245-2017), Proyectos de I + D + I en el marco del programa operative FEDER Andalucía 2014–2020 (B-CTS-126-UGR18, PIGE-0440-2019) and, Asociación Española Contra el Cáncer (AECC). PPM laboratory would like to special acknowledge to the Heroes hasta la Médula Association and to the Aula de Investigación sobre la Leucemia infantil: Héroes contra la Leucemia. JAM-C is supported by Instituto de Salud Carlos III FIS (PI19/00818) and CIBERONC (CB16/12/00489). AA is funded by the Ministry of Science, Innovation and Universities, Spain (FPU17/00067). JCA-P is supported by a Marie Curie Fellowship (MSCA-IF-EF-RI, #837897). CB-G acknowledges the PhD program in Biochemistry and Molecular Biology, University of Granada. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the paper. The Genomic Variation in Diffuse Large B-Cell Lymphomas study was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Department of Health and Human Services. A full list of acknowledgements can be found in the Supplementary Note of the original article [25]. The results published here are in part based upon data generated by the NCI’s Clinical Trials Sequence Program and The Cancer Genome Atlas (managed by the NCI and NHGRI). The datasets have been accessed through the NIH database for Genotypes and Phenotypes (dbGaP). Information about TCGA can be found at http://cancergenome.nih.gov.

Author information

Authors and Affiliations

Authors

Contributions

PPM conceived the study, coordinated the scientific team, and allocated the funding for the project; CB-G and MIR generated most of the experimental data; PPM and CB-G designed experiments, analyzed data, and wrote the paper; AA performed bioinformatics analyses; AA, MC, JCA-P, and JAM-C reviewed the paper; AFA-P, VGdY, and ARR designed, performed, and analyzed AID mutational study; SS-H and FM provided lentiviral vector reagents and expertize; EF-V and JM performed LC–MS/MS and proteomic data analysis; and JAM-C provided lymphoma expertise and samples. All the authors contributed with suggestions after a critical reading of the draft and approve its submission for publication.

Corresponding author

Correspondence to Pedro P. Medina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliñas-Gavira, C., Rodríguez, M.I., Andrades, A. et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia 34, 2722–2735 (2020). https://doi.org/10.1038/s41375-020-0919-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0919-5

This article is cited by

Search

Quick links