Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Combinatorial genetics reveals the Dock1-Rac2 axis as a potential target for the treatment of NPM1;Cohesin mutated AML

Abstract

Acute myeloid leukemia (AML) is driven by mutations that occur in numerous combinations. A better understanding of how mutations interact with one another to cause disease is critical to developing targeted therapies. Approximately 50% of patients that harbor a common mutation in NPM1 (NPM1cA) also have a mutation in the cohesin complex. As cohesin and Npm1 are known to regulate gene expression, we sought to determine how cohesin mutation alters the transcriptome in the context of NPM1cA. We utilized inducible Npm1cAflox/+ and core cohesin subunit Smc3flox/+ mice to examine AML development. While Npm1cA/+;Smc3Δ/+ mice developed AML with a similar latency and penetrance as Npm1cA/+ mice, RNA-seq suggests that the Npm1cA/+; Smc3Δ/+ mutational combination uniquely alters the transcriptome. We found that the Rac1/2 nucleotide exchange factor Dock1 was specifically upregulated in Npm1cA/+;Smc3Δ/+ HSPCs. Knockdown of Dock1 resulted in decreased growth and adhesion and increased apoptosis only in Npm1cA/+;Smc3Δ/+ AML. Higher Rac activity was also observed in Npm1cA/+;Smc3Δ/+ vs. Npm1cA/+ AMLs. Importantly, the Dock1/Rac pathway is targetable in Npm1cA/+;Smc3Δ/+ AMLs. Our results suggest that Dock1/Rac represents a potential target for the treatment of patients harboring NPM1cA and cohesin mutations and supports the use of combinatorial genetics to identify novel precision oncology targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cohesin haploinsufficiency enhances Npm1cA/+ HSPC self-renewal.
Fig. 2: Smc3 haploinsufficiency influences the spectrum of acquired mutations in Npm1cA/+ AML.
Fig. 3: Smc3 haploinsufficiency alters the transcriptional profile of Npm1cA/+ HSPCs.
Fig. 4: Dock1 regulates Npm1cA/+;Smc3Δ/+ AML biology.
Fig. 5: Dock1 functions through Rac2 to regulate apoptosis in Npm1cA/+;Smc3Δ/+ AML cells.
Fig. 6: The Dock1/Rac2 pathway is targetable in Npm1cA/+;Smc3Δ/+ AML.

Similar content being viewed by others

References

  1. Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia (US). 2021;23:337–47.

    Article  CAS  Google Scholar 

  2. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368:2059–74.

    Article  PubMed  CAS  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, et al. Mutations in the cohesin complex in acute myeloid leukemia: Clinical and prognostic implications. Blood. 2014;123:914–20.

    Article  CAS  PubMed  Google Scholar 

  5. Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood. 2014;124:1790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kong X, Ball AR, Pham HX, Zeng W, Chen H-Y, Schmiesing JA, et al. Distinct functions of human Cohesin-SA1 and Cohesin-SA2 in double-strand break repair. Mol Cell Biol. 2014;34:685–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH, Wargolet AJ, et al. DOT1L inhibitors block abnormal self-renewal induced by cohesin loss. Sci Rep. 2021;11:7288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fisher JB, Peterson J, Reimer M, Stelloh C, Pulakanti K, Gerbec ZJ, et al. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9. Leukemia. 2017;31:712–9.

    Article  CAS  PubMed  Google Scholar 

  9. Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, et al. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med. 2015;212:1819–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, Wang K, et al. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J Exp Med. 2015;212:1833–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, Li R, et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell. 2015;17:675–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galeev R, Baudet A, Kumar P, Nilsson AR, Nilsson B, Torngren T, et al. Genome-wide RNAi Screen Identifies Cohesin Genes as Modifiers of Renewal and Differentiation in Human HSCs. Cell Rep. 2016;14:2988–3000.

    Article  CAS  PubMed  Google Scholar 

  13. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45:1232–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bolli N, Nicoletti I, De Marco MF, Bigerna B, Pucciarini A, Mannucci R, et al. Born to be exported: COOH-terminal nuclear export signals of different strength ensure cytoplasmic accumulation of nucleophosmin leukemic mutants. Cancer Res. 2007;67:6230–7.

    Article  CAS  PubMed  Google Scholar 

  15. Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica. 2007;92:519–32.

    Article  CAS  PubMed  Google Scholar 

  16. Alpermann T, Schnittger S, Eder C, Dicker F, Meggendorfer M, Kern W, et al. Molecular subtypes of npm1 mutations have different clinical profiles, specific patterns of accompanying molecular mutations and varying outcomes in intermediate risk acute myeloid leukemia. Haematologica. 2016;101:e55–e58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A, et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011;43:470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woolthuis CM, Han L, Verkaik-Schakel RN, van Gosliga D, Kluin PM, Vellenga E, et al. Downregulation of MEIS1 impairs long-term expansion of CD34 + NPM1-mutated acute myeloid leukemia cells. Leukemia. 2012;26:848–53.

    Article  CAS  PubMed  Google Scholar 

  19. Loberg MA, Bell RK, Goodwin LO, Eudy E, Miles LA, SanMiguel JM, et al. Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia. 2019;33:1635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34:499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, et al. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood. 2017;130:1911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uckelmann HJ, Kim SM, Antonissen NJC, Krivtsov AV, Hatton C, McGeehan GM, et al. MLL-menin inhibition reverses pre-leukemic progenitor self-renewal induced By NPM1 mutations and prevents AML development. Blood. 2018;132:546–546.

    Article  Google Scholar 

  23. Kühn MWM, Song E, Feng Z, Sinha A, Chen C-W, Deshpande AJ, et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Disco. 2016;6:1166–81.

    Article  CAS  Google Scholar 

  24. Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, et al. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol. 2002;4:574–82.

    Article  CAS  PubMed  Google Scholar 

  25. Lu M, Ravichandran KS. Dock180-ELMO cooperation in Rac activation. Methods Enzymol. 2006;406:388–402.

    Article  CAS  PubMed  Google Scholar 

  26. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science. 302:445–9.

  27. Müller LUW, Schore RJ, Zheng Y, Thomas EK, Kim M-O, Cancelas JA, et al. Rac guanosine triphosphatases represent a potential target in AML. Leukemia. 2008;22:1803–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rozenveld-Geugien M, Baas IO, van Gosliga D, Vellenga E, Schuringa JJ. Expansion of normal and leukemic human hematopoietic stem/progenitor cells requires Rac-mediated interaction with stromal cells. Exp Hematol. 2007;35:782–92.

    Article  CAS  PubMed  Google Scholar 

  29. Capala ME, Vallenga E, Schuringa JJ. ELMO1 is upregulated in AML CD34+ stem/progenitor cells, mediates chemotaxis and predicts poor prognosis in normal karyotype AML. PLoS One. 2014;9:e111568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lee S-H, Chiu Y-C, Li Y-H, Lin C-C, Hou H-A, Chou W-C, et al. High expression of dedicator of cytokinesis 1 (DOCK1) confers poor prognosis in acute myeloid leukemia. Oncotarget. 2017;8:72250–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sha K, Lu Y, Zhang P, Pei R, Shi X, Fan Z, et al. Identifying a novel 5-gene signature predicting clinical outcomes in acute myeloid leukemia. Clin Transl Oncol. 2021;23:648–56.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Zheng X, Xie S, Zhang S, Mao J, Cai Y, et al. TBOPP enhances the anticancer effect of cisplatin by inhibiting DOCK1 in renal cell carcinoma. Mol Med Rep. 2020;22:1187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang X, Wang Y, Pang S, Li X, Wang P, Ma R, et al. LINC00665 promotes the progression of acute myeloid leukemia by regulating the miR-4458/DOCK1 pathway. Sci Rep. 2021;11:5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bagci H, Laurin M, Huber J, Muller WJ, Côté JF. Impaired cell death and mammary gland involution in the absence of Dock1 and Rac1 signaling. Cell Death Dis. 2014;5:e1374.

    Article  CAS  Google Scholar 

  35. Schäker K, Bartsch S, Patry C, Stoll SJ, Hillebrands J-L, Wieland T, et al. The bipartite Rac1 guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yan A, Li G, Zhang X, Zhu B, Linghu H. Pro-survival effect of Dock180 overexpression on rat-derived H9C2 cardiomyocytes. Med Sci Monit Basic Res 2013;19:12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akakura S, Singh S, Spataro M, Akakura R, Kim J-I, Albert ML, et al. The opsonin MFG-E8 is a ligand for the αvβ5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res. 2004;292:403–16.

    Article  CAS  PubMed  Google Scholar 

  38. Mulloy JC, Cancelas JA, Filippi M-D, Kalfa TA, Guo F, Zheng Y. Rho GTPases in hematopoiesis and hemopathies. Blood. 2010;115:936–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Durand-Onaylı V, Haslauer T, Harzschel A, Hartmann TN. Rac GTPases in Hematological Malignancies. Int J Mol Sci. 2018;19:4041.

    Article  PubMed Central  Google Scholar 

  40. Nishikimi A, Uruno T, Duan X, Cao Q, Okamura Y, Saitoh T, et al. Blockade of inflammatory responses by a small-molecule inhibitor of the Rac activator DOCK2. Chem Biol. 2012;19:488–97.

    Article  CAS  PubMed  Google Scholar 

  41. Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ. Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem. 2007;282:35666–78.

    Article  CAS  PubMed  Google Scholar 

  42. Fisher JB, McNulty M, Burke MJ, Crispino JD, Rao S. Cohesin mutations in myeloid malignancies. Trends Cancer. 2017;3:282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Darracq A, Pak H, Bourgoin V, Zmiri F, Dellaire G, Affar EB, et al. NPM and NPM-MLF1 interact with chromatin remodeling complexes and influence their recruitment to specific genes. PLoS Genet. 2019;15:e1008463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tajiri H, Uruno T, Shirai T, Takaya D, Matsunaga S, Setoyama D, et al. Targeting Ras-driven cancer cell survival and invasion through selective inhibition of DOCK1. Cell Rep. 2017;19:969–80.

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe M, Terasawa M, Miyano K, Yanagihara T, Uruno T, Sanematsu F, et al. DOCK2 and DOCK5 Act Additively in Neutrophils To Regulate Chemotaxis, Superoxide Production, and Extracellular Trap Formation. J Immunol. 2014;193:5660–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Scott Armstrong and Michael Kühn for providing the OCI-AML3 Cas9 cell line and Benedetta Bonacci for aid with flow cytometry experiments.

Funding

This work was funded by: NCI R01 CA204231 and the Midwest Athletes against Childhood Cancer to SR. AEM is supported by a generous gift from Ms. Nan Gardetto.

Author information

Authors and Affiliations

Authors

Contributions

AEM designed research studies, conducted experiments, acquired and analyzed data, and wrote the manuscript. CS conducted experiments and acquired data. KP, RB, QF, and JB analyzed data. ST provided statistical advice and analyzed data. JBF designed research studies, conducted experiments, acquired data, and analyzed data. KEH conducted experiments and acquired data. YZ conducted experiments. ADV and GSV created and provided mouse models for the experiments and provided comments and edits to the manuscript. SR designed research studies and aided in writing the manuscript.

Corresponding author

Correspondence to Sridhar Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, A.E., Stelloh, C., Pulakanti, K. et al. Combinatorial genetics reveals the Dock1-Rac2 axis as a potential target for the treatment of NPM1;Cohesin mutated AML. Leukemia 36, 2032–2041 (2022). https://doi.org/10.1038/s41375-022-01632-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01632-y

Search

Quick links