Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome

Abstract

Methamphetamine (Meth) abuse has reached epidemic proportions in many countries and can induce psychotic episodes mimicking the clinical profile of schizophrenia. Brain-derived neurotrophic factor (BDNF) is implicated in both Meth effects and schizophrenia. We therefore studied the long-term effects of chronic Meth exposure in transgenic mice engineered to harbor the human BDNFVal66Met polymorphism expressed via endogenous mouse promoters. These mice were chronically treated with an escalating Meth regime during late adolescence. At least 4 weeks later, all hBDNFVal66Met Meth-treated mice exhibited sensitization confirming persistent behavioral effects of Meth. We used high-resolution quantitative mass spectrometry-based proteomics to biochemically map the long-term effects of Meth within the brain, resulting in the unbiased detection of 4808 proteins across the mesocorticolimbic circuitry. Meth differentially altered dopamine signaling markers (e.g., Dat, Comt, and Th) between hBDNFVal/Val and hBDNFMet/Met mice, implicating involvement of BDNF in Meth-induced reprogramming of the mesolimbic proteome. Targeted analysis of 336 schizophrenia-risk genes, as well as 82 growth factor cascade markers, similarly revealed that hBDNFVal66Met genotype gated the recruitment of these factors by Meth in a region-specific manner. Cumulatively, these data represent the first comprehensive analysis of the long-term effects of chronic Meth exposure within the mesocorticolimbic circuitry. In addition, these data reveal that long-term Meth-induced brain changes are strongly dependent upon BDNF genetic variation, illustrating how drug-induced psychosis may be modulated at the molecular level by a single genetic locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic Meth treatment induces long-term behavioral hypersensitivity to an acute Meth challenge in hBDNFVal66Met mice.
Fig. 2: Quantitative proteomic profiling reveals that methamphetamine remodels the mesocorticolimbic proteome.
Fig. 3: Mesocorticolimbic proteome in response to methamphetamine reflects alteration in neurotrophin signaling and schizophrenia.
Fig. 4: Functional enrichment analysis shows recruitment of schizophrenia-risk factors by Meth in a region-specific manner for each genotype.

Similar content being viewed by others

References

  1. Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, et al. Methamphetamine-associated psychosis. J Neuroimmune Pharmacol. 2012;7:113–39.

    Article  PubMed  Google Scholar 

  2. Freye E. Pharmacology of methamphetamine. In: Pharmacology and abuse of cocaine, amphetamines, ecstasy and related designer drugs. Dordrecht, Heidelberg, London, New York: Springer; 2009. 119–24.

  3. Sato M. A lasting vulnerability to psychosis in patients with previous methamphetamine psychosis. Ann N. Y Acad Sci. 1992;654:160–70.

    Article  CAS  PubMed  Google Scholar 

  4. Iwanami A, Sugiyama A, Kuroki N, Toda S, Kato N, Nakatani Y, et al. Patients with methamphetamine psychosis admitted to a psychiatric hospital in Japan. Acta Psychiat Scand. 1994;89:428–32.

    Article  CAS  PubMed  Google Scholar 

  5. McKetin R, McLaren J, Lubman DI, Hides L. The prevalence of psychotic symptoms among methamphetamine users. Addiction. 2006;101:1473–8.

    Article  PubMed  Google Scholar 

  6. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry. 1998;155:761–7.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci. 2002;5:267–71.

    Article  CAS  PubMed  Google Scholar 

  8. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007;102:16–32.

    Article  PubMed  Google Scholar 

  9. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996;2:699–703.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J. Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 1980;181:151–60.

    Article  CAS  PubMed  Google Scholar 

  11. Nakayama M, Koyama T, Yamashita I. Long-lasting decrease in dopamine uptake sites following repeated administration of methamphetamine in the rat striatum. Brain Res. 1993;601:209–12.

    Article  CAS  PubMed  Google Scholar 

  12. Bamford NS, Zhang H, Joyce JA, Scarlis CA, Hanan W, Wu N-P, et al. Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron. 2008;58:89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li T, Chen Ck, Hu X, Ball D, Lin SK, Chen W, et al. Association analysis of the DRD4 and COMT genes in methamphetamine abuse. Am J Med Genet B Neuropsychiatr Genet. 2004;129:120–4.

    Article  Google Scholar 

  14. Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, et al. Nine-or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J. 2003;3:242–7.

    Article  CAS  PubMed  Google Scholar 

  15. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98:6917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okuyama Y, Ishiguro H, Toru M, Arinami T. A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Commun. 1999;258:292–5.

    Article  CAS  PubMed  Google Scholar 

  17. Sáiz PA, García-Portilla MP, Arango C, Morales B, Arias B, Corcoran P, et al. Genetic polymorphisms in the dopamine-2 receptor (DRD2), dopamine-3 receptor (DRD3), and dopamine transporter (SLC6A3) genes in schizophrenia: data from an association study. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:26–31.

    Article  CAS  PubMed  Google Scholar 

  18. Shifman S, Bronstein M, Sternfeld M, Pisanté-Shalom A, Lev-Lehman E, Weizman A, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet. 2002;71:1296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iamjan SA, Thanoi S, Watiktinkorn P, Nudmamud-Thanoi S, Reynolds GP. BDNF (Val66Met) genetic polymorphism is associated with vulnerability for methamphetamine dependence. Pharmacogenomics. 2015;16:1541–5.

    Article  CAS  PubMed  Google Scholar 

  20. Notaras M, van den Buuse M. Brain-Derived Neurotrophic Factor (BDNF): Novel insights into regulation and genetic variation. Neuroscientist. 2019;25:434–54.

    Article  CAS  PubMed  Google Scholar 

  21. Notaras M, Hill R, van den Buuse M. BDNF Val66Met genotype determines hippocampus-dependent behavior via sensitivity to glucocorticoid signaling. Mol Psychiatry. 2016;21:730–2.

    Article  CAS  PubMed  Google Scholar 

  22. Yu H, Wang DD, Wang Y, Liu T, Lee FS, Chen ZY. Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J Neurosci. 2012;32:4092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Z-Y, Jing D, Bath KG, Ieraci A, Khan T, Siao C-J, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Notaras M, Hill R, van den Buuse M. A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev. 2015;51:15–30.

    Article  CAS  PubMed  Google Scholar 

  25. Notaras M, Hill R, van den Buuse M. A role for the BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress & controversy. Mol Psychiatry. 2015;20:916–30.

    Article  CAS  PubMed  Google Scholar 

  26. Manning EE, Halberstadt AL, van den Buuse M. BDNF deficient mice show reduced psychosis-related behaviours following chronic methamphetamine. Int J Neuropsychopharmacol. 2016;19:pyv116.

    Article  CAS  PubMed  Google Scholar 

  27. Guillin O, Griffon N, Diaz J, Le Foll B, Bezard E, Gross C, et al. Brain-derived neurotrophic factor and the plasticity of the mesolimbic dopamine pathway. Int Rev Neurobiol. 2004;59:425–44.

    Article  CAS  PubMed  Google Scholar 

  28. Collo G, Cavalleri L, Spano P. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine. Front Pharmacol. 2014;5:259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cao L, Dhilla A, Mukai J, Blazeski R, Lodovichi C, Mason C, et al. Genetic modulation of BDNF signaling affects the outcome of axonal competition in vivo. Curr Biol. 2007;17:911–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hill R, Wu Y, Kwek P, van den Buuse M. Modulatory effects of sex steroid hormones on brain‐derived neurotrophic factor‐tyrosine kinase B expression during adolescent development in C57Bl/6 mice. J Neuroendocrinol. 2012;24:774–88.

    Article  CAS  PubMed  Google Scholar 

  31. van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull. 2010;36:246–70.

    Article  PubMed  Google Scholar 

  32. Samardzija C, Greening DW, Escalona R, Chen M, Bilandzic M, Luwor R, et al. Knockdown of stem cell regulator Oct4A in ovarian cancer reveals cellular reprogramming associated with key regulators of cytoskeleton-extracellular matrix remodelling. Sci Rep. 2017;7:46312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greening DW, Ji H, Chen M, Robinson BW, Dick IM, Creaney J, et al. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep. 2016;6:32643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56:293–304.

    Article  CAS  PubMed  Google Scholar 

  35. Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteom. 2013;12:587–98.

    Article  CAS  Google Scholar 

  36. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod. 2016;94:38.

    Article  CAS  PubMed  Google Scholar 

  37. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.

    Google Scholar 

  38. Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H, Kapp EA, et al. Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteom. 2013;12:2148–59.

    Article  CAS  Google Scholar 

  39. Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.

    Article  CAS  PubMed  Google Scholar 

  40. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tabachnik BG, Fidell LS. Using multivariate statistics. Harlow, UK: Pearson Education Ltd; 2013.

    Google Scholar 

  42. Stevens JR. Applied multivariate statistics for the social sciences. New York, NY: Taylor & Francis Group; 2012.

    Book  Google Scholar 

  43. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10:850–60.

    Article  CAS  PubMed  Google Scholar 

  44. Wesselborg S, Bauer MK, Vogt M, Schmitz ML, Schulze-Osthoff K. Activation of transcription factor NF-kappaB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J Biol Chem. 1997;272:12422–9.

    Article  CAS  PubMed  Google Scholar 

  45. Goedert M, Cuenda A, Craxton M, Jakes R, Cohen P. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 1997;16:3563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rakhit S, Clark CJ, O'Shaughnessy CT, Morris BJ. N-methyl-D-aspartate and brain-derived neurotrophic factor induce distinct profiles of extracellular signal-regulated kinase, mitogen- and stress-activated kinase, and ribosomal s6 kinase phosphorylation in cortical neurons. Mol Pharmacol. 2005;67:1158–65.

    Article  CAS  PubMed  Google Scholar 

  47. Park SA, Kim TS, Choi KS, Park HJ, Heo K, Lee BI. Chronic activation of CREB and p90RSK in human epileptic hippocampus. Exp Mol Med. 2003;35:365–70.

    Article  CAS  PubMed  Google Scholar 

  48. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–34.

    Article  CAS  PubMed  Google Scholar 

  49. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  PubMed Central  CAS  Google Scholar 

  50. Wu Y, Yao YG, Luo XJ. SZDB: a database for schizophrenia genetic research. Schizophr Bull. 2017;43:459–71.

    PubMed  Google Scholar 

  51. Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sorensen KM, et al. CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry. 2010;15:119–21.

    Article  CAS  PubMed  Google Scholar 

  52. Peltola MA, Kuja-Panula J, Liuhanen J, Võikar V, Piepponen P, Hiekkalinna T, et al. AMIGO-Kv2. 1 potassium channel complex is associated with schizophrenia-related phenotypes. Schizophr Bull. 2015;42:191–201.

    PubMed  PubMed Central  Google Scholar 

  53. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet. 2017;49:1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stone JL, Merriman B, Cantor RM, Geschwind DH, Nelson SF. High density SNP association study of a major autism linkage region on chromosome 17. Hum Mol Genet. 2007;16:704–15.

    Article  CAS  PubMed  Google Scholar 

  55. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, et al. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259:151–63.

    Article  PubMed  Google Scholar 

  56. Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, et al. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun. 2013;4:2490.

    Article  CAS  PubMed  Google Scholar 

  57. Abekawa T, Ohmori T, Koyama T. Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res. 1994;643:276–81.

    Article  CAS  PubMed  Google Scholar 

  58. Higashi H, Inanaga K, Nishi S, Uchimura N. Enhancement of dopamine actions on rat nucleus accumbens neurones in vitro after methamphetamine pre-treatment. J Physiol. 1989;408:587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rocha A, Kalivas PW. Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci. 2010;31:903–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Worsley J, Moszczynska A, Falardeau P, Kalasinsky K, Schmunk G, Guttman M, et al. Dopamine D1 receptor protein is elevated in nucleus accumbens of human, chronic methamphetamine users. Mol Psychiatry. 2000;5:664.

    Article  CAS  PubMed  Google Scholar 

  61. Broening HW, Pu C, Vorhees CV. Methamphetamine selectively damages dopaminergic innervation to the nucleus accumbens core while sparing the shell. Synapse. 1997;27:153–60.

    Article  CAS  PubMed  Google Scholar 

  62. Glerup S, Olsen D, Vaegter CB, Gustafsen C, Sjoegaard SS, Hermey G, et al. SorCS2 regulates dopaminergic wiring and is processed into an apoptotic two-chain receptor in peripheral glia. Neuron. 2014;82:1074–87.

    Article  CAS  PubMed  Google Scholar 

  63. Kailainathan S, Piers TM, Yi JH, Choi S, Fahey MS, Borger E, et al. Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharm Res. 2016;104:97–107.

    Article  CAS  Google Scholar 

  64. Mizui T, Ishikawa Y, Kumanogoh H, Lume M, Matsumoto T, Hara T, et al. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci USA. 2015;112:E3067–74. 201422336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet. 2004;36:131–7.

    Article  CAS  PubMed  Google Scholar 

  66. Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, et al. Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry. 2010;67:991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thiselton DL, Vladimirov VI, Kuo P-H, McClay J, Wormley B, Fanous A, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry. 2008;63:449–57.

    Article  CAS  PubMed  Google Scholar 

  68. Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshiya Y, et al. Positive association of AKT1 haplotype to Japanese methamphetamine use disorder. Int J Neuropsychopharmacol. 2006;9:77–81.

    Article  CAS  PubMed  Google Scholar 

  69. Chen Y-W, Kao H-Y, Min M-Y, Lai W-S. A sex-and region-specific role of Akt1 in the modulation of methamphetamine-induced hyperlocomotion and striatal neuronal activity: implications in schizophrenia and methamphetamine-induced psychosis. Schizophrenia Bull. 2013. https://doi.org/10.1093/schbul/sbt031.

  70. Miller JP, Yates BE, Al-Ramahi I, Berman AE, Sanhueza M, Kim E, et al. A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease. PLoS Genet. 2012;8:e1003042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin JR, Cai Y, Zhang Q, Zhang W, Nogales-Cadenas R, Zhang ZD. Integrated post-GWAS analysis sheds new light on the disease mechanisms of schizophrenia. Genetics. 2016;204:1587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heinzerling KG, Shoptaw S. Gender, brain-derived neurotrophic factor Val66Met, and frequency of methamphetamine use. Gend Med. 2012;9:112–20.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cheng CY, Hong CJ, Yu YW, Chen TJ, Wu HC, Tsai SJ. Brain-derived neurotrophic factor (Val66Met) genetic polymorphism is associated with substance abuse in males. Brain Res Mol Brain Res. 2005;140:86–90.

    Article  CAS  PubMed  Google Scholar 

  74. Itoh K, Hashimoto K, Shimizu E, Sekine Y, Ozaki N, Inada T, et al. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan. Am J Med Genet B Neuropsychiatr Genet. 2005;132B:70–3.

    Article  PubMed  Google Scholar 

  75. Su H, Tao J, Zhang J, Xie Y, Wang Y, Zhang Y, et al. The effects of BDNF Val66Met gene polymorphism on serum BDNF and cognitive function in methamphetamine-dependent patients and normal controls: a case-control study. J Clin Psychopharmacol. 2015;35:517–24.

    Article  CAS  PubMed  Google Scholar 

  76. van den Buuse M, Lee JJW, Jaehne EJ. Interaction of brain-derived neurotrophic factor Val66Met genotype and history of stress in regulation of prepulse inhibition in mice. Schizophr Res. 2018;198:60–7.

    Article  PubMed  Google Scholar 

  77. Bath KG, Chuang J, Spencer-Segal JL, Amso D, Altemus M, McEwen BS, et al. Variant brain-derived neurotrophic factor (Valine66Methionine) polymorphism contributes to developmental and estrous stage-specific expression of anxiety-like behavior in female mice. Biol Psychiatry. 2012;72:499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marrocco J, Petty GH, Rios MB, Gray JD, Kogan JF, Waters EM, et al. A sexually dimorphic pre-stressed translational signature in CA3 pyramidal neurons of BDNF Val66Met mice. Nat Commun. 2017;8:808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Spencer JL, Waters EM, Milner TA, Lee FS, McEwen BS. BDNF variant Val66Met interacts with estrous cycle in the control of hippocampal function. Proc Natl Acad Sci USA. 2010;107:4395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded, in part, by project grants from the NHMRC of Australia to DG and an NHMRC Senior Research Fellowship to MvdB. These studies were furthermore supported by a Research Focus Area—Understanding Disease grant from La Trobe University. The authors acknowledge the La Trobe Comprehensive Proteomics Platform for access to equipment and expertise employed in this study. We also acknowledge the expert contributions of Dr Rohan Steel of the Biological Research Unit, Racing Analytical Services Ltd, Flemington, Australia, and of Dr Emily Jaehne, Mr Matt Maher and Ms Michelle Corrone of the School of Psychology and Public Health, La Trobe University, Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van den Buuse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greening, D.W., Notaras, M., Chen, M. et al. Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol Psychiatry 26, 4431–4447 (2021). https://doi.org/10.1038/s41380-019-0617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0617-8

This article is cited by

Search

Quick links