Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between vascular endothelial growth factor-mediated blood–brain barrier dysfunction and stress-induced depression

Abstract

Several lines of evidence suggest that stress induces the neurovascular dysfunction associated with increased blood–brain barrier (BBB) permeability, which could be an important pathology linking stress and psychiatric disorders, including major depressive disorder (MDD). However, the detailed mechanism resulting in BBB dysfunction associated in the pathophysiology of MDD still remains unclear. Herein, we demonstrate the role of vascular endothelial growth factor (VEGF), a key mediator of vascular angiogenesis and BBB permeability, in stress-induced BBB dysfunction and depressive-like behavior development. We implemented an animal model of depression, chronic restraint stress (RS) in BALB/c mice, and found that the BBB permeability was significantly increased in chronically stressed mice. Immunohistochemical and electron microscopic observations revealed that increased BBB permeability was associated with both paracellular and transcellular barrier alterations in the brain endothelial cells. Pharmacological inhibition of VEGF receptor 2 (VEGFR2) using a specific monoclonal antibody (DC101) prevented chronic RS-induced BBB permeability and anhedonic behavior. Considered together, these results indicate that VEGF/VEGFR2 plays a crucial role in the pathogenesis of depression by increasing the BBB permeability, and suggest that VEGFR2 inhibition could be a potential therapeutic strategy for the MDD subtype associated with BBB dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vascular endothelial growth factor (VEGF) level is upregulated in patients with major depressive disorder (MDD) and chronic restraint stress (RS) mice.
Fig. 2: Chronic restraint stress (RS) increased blood–brain barrier (BBB) permeability.
Fig. 3: Chronic restraint stress (RS) induced morphological blood–brain barrier (BBB) changes.
Fig. 4: Anti-VEGFR2 treatment suppressed 21 d restraint stress (RS)-induced depression and blood–brain barrier (BBB) dysfunction.
Fig. 5: Effect of DC101 treatment on blood–brain barrier (BBB) ultrastructure.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Association; 2013.

  2. WHO. Depression and other common mental disorders: global health estimate; WHO; 2017; p 12.

  3. Kunugi H, Hori H, Ogawa S. Biochemical markers subtyping major depressive disorder. Psychiatry Clin Neurosci. 2015;69:597–608.

    PubMed  Google Scholar 

  4. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44:75–83.

    PubMed  Google Scholar 

  5. Sasayama D, Hattori K, Wakabayashi C, Teraishi T, Hori H, Ota M, et al. Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res. 2013;47:401–6.

    PubMed  Google Scholar 

  6. Bruno A, Dolcetti E, Rizzo FR, Fresegna D, Musella A, Gentile A, et al. Inflammation-associated synaptic alterations as shared threads in depression and multiple sclerosis. Front Cell Neurosci. 2020;14:169.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135:373–87.

    PubMed  Google Scholar 

  9. Böttcher C, Fernández-Zapata C, Snijders GJL, Schlickeiser S, Sneeboer MAM, Kunkel D, et al. Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl Psychiatry. 2020;10:310.

    PubMed  PubMed Central  Google Scholar 

  10. Snijders GJLJ, Sneeboer MAM, Fernández-Andreu A, Udine E, Psychiatric donor program of the Netherlands Brain Bank (NBB-Psy), Boks MP, et al. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol Psychiatry. 2020;7:3336–3349.

  11. Zhang L, Zhang J, You Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12:1–13.

    PubMed  PubMed Central  Google Scholar 

  12. Nie X, Kitaoka S, Tanaka K, Segi-Nishida E, Imoto Y, Ogawa A, et al. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron. 2018;99:464–479.e7.

    CAS  PubMed  Google Scholar 

  13. Tjakra M, Wang Y, Vania V, Hou Z, Durkan C, Wang N, et al. Overview of crosstalk between multiple factor of transcytosis in blood brain barrier. Front Neurosci. 2020;13:1436.

    PubMed  PubMed Central  Google Scholar 

  14. Villaseñor R, Lampe J, Schwaninger M, Collin L. Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol Life Sci. 2019;76:1081–92.

    PubMed  Google Scholar 

  15. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.

    CAS  PubMed  Google Scholar 

  16. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.

    CAS  PubMed  Google Scholar 

  17. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99:21–78.

    CAS  PubMed  Google Scholar 

  18. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci USA. 2020;117:3326–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation. 2013;10:142.

    PubMed  PubMed Central  Google Scholar 

  21. Hattori K, Ota M, Sasayama D, Yoshida S, Matsumura R, Miyakawa T, et al. Increased cerebrospinal fluid fibrinogen in major depressive disorder. Sci Rep. 2015;5:11412.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol. 2016;12:439–54.

    CAS  PubMed  Google Scholar 

  23. Pu J, Liu Y, Gui S, Tian L, Xu S, Song X, et al. Vascular endothelial growth factor in major depressive disorder, schizophrenia, and bipolar disorder: a network meta-analysis. Psychiatry Res. 2020;292:113319.

    CAS  PubMed  Google Scholar 

  24. Tseng P-T, Cheng Y-S, Chen Y-W, Wu C-K, Lin P-Y. Increased levels of vascular endothelial growth factor in patients with major depressive disorder: a meta-analysis. Eur Neuropsychopharmacol. 2015;25:1622–30.

    CAS  PubMed  Google Scholar 

  25. Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.

    CAS  PubMed  Google Scholar 

  26. Takebayashi M, Hashimoto R, Hisaoka K, Tsuchioka M, Kunugi H. Plasma levels of vascular endothelial growth factor and fibroblast growth factor 2 in patients with major depressive disorders. J Neural Transm. 2010;117:1119–22.

    CAS  PubMed  Google Scholar 

  27. Hidese S, Hattori K, Sasayama D, Tsumagari T, Miyakawa T, Matsumura R, et al. Cerebrospinal fluid neuroplasticity-associated protein levels in patients with psychiatric disorders: a multiplex immunoassay study. Transl Psychiatry. 2020;10:161.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fournier NM, Duman RS. Role of vascular endothelial growth factor in adult hippocampal neurogenesis: implications for the pathophysiology and treatment of depression. Behav Brain Res. 2012;227:440–9.

    CAS  PubMed  Google Scholar 

  29. Warner-Schmidt JL, Duman RS. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA. 2007;104:4647–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi Y, Luan D, Song R, Zhang Z. Value of peripheral neurotrophin levels for the diagnosis of depression and response to treatment: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2020;41:40–51.

    CAS  PubMed  Google Scholar 

  31. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed (DSM-IV). Washington, DC: American Psychiatric Association; 2014.

  32. Tsuchimine S, Matsuno H, O’Hashi K, Chiba S, Yoshimura A, Kunugi H, et al. Comparison of physiological and behavioral responses to chronic restraint stress between C57BL/6J and BALB/c mice. Biochem Biophys Res Commun. 2020;525:33–38.

    CAS  Google Scholar 

  33. Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res. 2001;61:39–44.

    CAS  PubMed  Google Scholar 

  34. di Tomaso E, London N, Fuja D, Logie J, Tyrrell JA, Kamoun W, et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS ONE. 2009;4:e5123.

    PubMed  PubMed Central  Google Scholar 

  35. Scheggi S, De Montis MG, Gambarana C. Making sense of rodent models of anhedonia. Int J Neuropsychopharmacol. 2018;21:1049–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology. 2004;29:2007–17.

    PubMed  Google Scholar 

  37. Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;39:112–9.

    CAS  Google Scholar 

  38. Sántha P, Veszelka S, Hoyk Z, Mészáros M, Walter FR, Tóth AE, et al. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Front Mol Neurosci. 2016;8:88.

    PubMed  PubMed Central  Google Scholar 

  39. Freeman GH, Halton JH. Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 1951;38:141–9.

    CAS  PubMed  Google Scholar 

  40. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 

  41. Takano S, Ishikawa E, Matsuda M, Sakamoto N, Akutsu H, Yamamoto T, et al. The anti-angiogenic role of soluble-form VEGF receptor in malignant gliomas. Int J Oncol. 2017;50:515–24.

    CAS  PubMed  Google Scholar 

  42. Ebos JML, Bocci G, Man S, Thorpe PE, Hicklin DJ, Zhou D, et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol Cancer Res. 2004;2:315–26.

    CAS  PubMed  Google Scholar 

  43. Villaseñor R, Ozmen L, Messaddeq N, Grüninger F, Loetscher H, Keller A, et al. Trafficking of endogenous immunoglobulins by endothelial cells at the blood-brain barrier. Sci Rep. 2016;6:25658.

    PubMed  PubMed Central  Google Scholar 

  44. Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci. 2016;10:2.

    PubMed  PubMed Central  Google Scholar 

  45. Li X, Padhan N, Sjöström EO, Roche FP, Testini C, Honkura N, et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat Commun. 2016;7:11017.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci USA. 2009;106:1977–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Investig. 2012;122:2454–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reeson P, Tennant KA, Gerrow K, Wang J, Novak SW, Thompson K, et al. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci. 2015;35:5128–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morin-Brureau M, Lebrun A, Rousset M-C, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oztaş B, Akgül S, Arslan FB. Influence of surgical pain stress on the blood-brain barrier permeability in rats. Life Sci. 2004;74:1973–9.

    PubMed  Google Scholar 

  51. Lehmann ML, Weigel TK, Cooper HA, Elkahloun AG, Kigar SL, Herkenham M. Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep. 2018;8:11240.

    PubMed  PubMed Central  Google Scholar 

  52. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature 2010;468:557–61.

    CAS  PubMed  Google Scholar 

  53. Hudson N, Powner MB, Sarker MH, Burgoyne T, Campbell M, Ockrim ZK, et al. Differential apicobasal VEGF signaling at vascular blood-neural barriers. Dev Cell. 2014;30:541–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Investig Ophthalmol Vis Sci. 1999;40:157–67.

    CAS  Google Scholar 

  55. Bosma EK, van Noorden CJF, Schlingemann RO, Klaassen I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids Barriers CNS. 2018;15:24.

    PubMed  PubMed Central  Google Scholar 

  56. Guo L, Zhang H, Hou Y, Wei T, Liu J. Plasmalemma vesicle-associated protein: a crucial component of vascular homeostasis. Exp Ther Med. 2016;12:1639–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang H, Shen J, Vinores SA. Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS ONE. 2011;6:e21411.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Suidan GL, Dickerson JW, Johnson HL, Chan TW, Pavelko KD, Pirko I, et al. Preserved vascular integrity and enhanced survival following neuropilin-1 inhibition in a mouse model of CD8 T cell-initiated CNS vascular permeability. J Neuroinflammation. 2012;9:218.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zebrowski BK, Yano S, Liu W, Shaheen RM, Hicklin DJ, Putnam JBJ, et al. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin Cancer Res. 1999;5:3364–8.

    CAS  PubMed  Google Scholar 

  60. Robinson SD, Reynolds LE, Wyder L, Hicklin DJ, Hodivala-Dilke KM. Beta3-integrin regulates vascular endothelial growth factor-A-dependent permeability. Arterioscler Thromb Vasc Biol. 2004;24:2108–14.

    CAS  PubMed  Google Scholar 

  61. Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front Cell Dev Biol. 2020;8:1–12.

    Google Scholar 

  62. Huang H, Parlier R, Shen J-K, Lutty GA, Vinores SA. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV. PLoS ONE. 2013;8:e71808.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Beazley-Long N, Moss CE, Ashby WR, Bestall SM, Almahasneh F, Durrant AM, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Holmes K, Charnock Jones SD, Forhead AJ, Giussani DA, Fowden AL, Licence D, et al. Localization and control of expression of VEGF-A and the VEGFR-2 receptor in fetal sheep intestines. Pediatr Res. 2008;63:143–8.

    CAS  PubMed  Google Scholar 

  65. Yang EV, Kim S, Donovan EL, Chen M, Gross AC, Webster Marketon JI, et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009;23:267–75.

    CAS  PubMed  Google Scholar 

  66. Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9:4514–21.

    CAS  PubMed  Google Scholar 

  67. Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a β-adrenoreceptor/cAMP/protein kinase a pathway involving Src but independently of Erk1/2. J Biol Chem. 2000;275:13802–11.

    CAS  PubMed  Google Scholar 

  68. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3:1227.

    PubMed  Google Scholar 

  69. Hulse RE, Swenson WG, Kunkler PE, White DM, Kraig RP. Monomeric IgG is neuroprotective via enhancing microglial recycling endocytosis and TNF-alpha. J Neurosci. 2008;28:12199–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ulvestad E, Williams K, Vedeler C, Antel J, Nyland H, Mørk S, et al. Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J Neurol Sci. 1994;121:125–31.

    CAS  PubMed  Google Scholar 

  71. Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ, Perry VH. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol. 2011;186:7215–24.

    CAS  PubMed  Google Scholar 

  72. Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors in disorders of the central nervous system. NeuroMolecular Med. 2010;12:164–78.

    CAS  PubMed  Google Scholar 

  73. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem. 1996;271:28220–8.

    CAS  PubMed  Google Scholar 

  74. Wang H, Han X, Wittchen ES, Hartnett ME. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation. Mol Vis. 2016;22:116–28.

    PubMed  PubMed Central  Google Scholar 

  75. Fahey E, Doyle SL. IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front Immunol. 2019;10:1426.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Argaw AT, Zhang Y, Snyder BJ, Zhao M-L, Kopp N, Lee SC, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006;177:5574–84.

    CAS  PubMed  Google Scholar 

  77. Chen M, Arumugam T-V, Leanage G, Tieng QM, Yadav A, Ullmann JFP, et al. Disease-modifying effect of intravenous immunoglobulin in an experimental model of epilepsy. Sci Rep. 2017;7:40528.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Arumugam T-V, Tang S-C, Lathia JD, Cheng A, Mughal MR, Chigurupati S, et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci USA. 2007;104:14104–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Walker F, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14:1262–76.

    CAS  PubMed  Google Scholar 

  80. Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, et al. Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry. 2001;50:809–12.

    CAS  PubMed  Google Scholar 

  81. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233:1637–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M. Purinergic receptor P2RY12-dependent microglial closure of the injured blood–brain barrier. Proc Natl Acad Sci USA. 2016;113:1074–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 2019;10:5816.

  84. Pagès G, Pouysségur J. Transcriptional regulation of the vascular endothelial growth factor gene-a concert of activating factors. Cardiovasc Res. 2005;65:564–73.

    PubMed  Google Scholar 

  85. Lee S, Kang B-M, Kim JH, Min J, Kim HS, Ryu H, et al. Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep. 2018;8:13064.

    PubMed  PubMed Central  Google Scholar 

  86. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Investig. 2000;106:829–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, et al. Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci. 2008;28:14522–36.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Sekiguchi for use of the imaging facility. This work was supported by a Grant-in-Aid for Scientific Research C from Japan Society for the Promotion of Science (to HM, 17K01983, 20K07985, to K.Sohya, 16KT0199), a Grant-in-Aid for Young Scientists B (to ST, 19K17102), Funding for research to expedite effective drug discovery by Government, Academia and Private partnership from Japan Agency for Medical Research and Development, AMED (to HK, 19ak0101043h0205, 19ak0101044h0404), and an Intramural Research Grants (30-1 and 3-1) for Neurological and Psychiatric Disorders of National Center of Neurology and Psychiatry (HK and KH). National Center of Neurology and Psychiatry biobank is partly supported by AMED GAPFREE4 (to KH, 21ak0101151h0002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing draft, HM, ST, KO, HK, and K.Sohya; Investigation, HM, ST, KO, K.Sakai, KH, SH, SN, SC, AY, NF, MK, MT, SO, NI, and K.Sohya; Analysis, HM, ST, KO, KH, SH, SN, SC, and AY; Funding acquisition, HM, ST, HK, and K.Sohya. All the authors read and commented on the manuscript.

Corresponding authors

Correspondence to Hitomi Matsuno or Kazuhiro Sohya.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuno, H., Tsuchimine, S., O’Hashi, K. et al. Association between vascular endothelial growth factor-mediated blood–brain barrier dysfunction and stress-induced depression. Mol Psychiatry 27, 3822–3832 (2022). https://doi.org/10.1038/s41380-022-01618-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01618-3

This article is cited by

Search

Quick links