Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity

Abstract

Histidine phosphorylation (pHis), occurring on the histidine of substrate proteins, is a hidden phosphoproteome that is poorly characterized in mammals. LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) is one of the histidine phosphatases and its encoding gene was recently identified as a susceptibility gene for major depressive disorder (MDD). However, little is known about how LHPP or pHis contributes to depression. Here, by using integrative approaches of genetics, behavior and electrophysiology, we observed that LHPP in the medial prefrontal cortex (mPFC) was essential in preventing stress-induced depression-like behaviors. While genetic deletion of LHPP per se failed to affect the mice’s depression-like behaviors, it markedly augmented the behaviors upon chronic social defeat stress (CSDS). This augmentation could be recapitulated by the local deletion of LHPP in mPFC. By contrast, overexpressing LHPP in mPFC increased the mice’s resilience against CSDS, suggesting a critical role of mPFC LHPP in stress-induced depression. We further found that LHPP deficiency increased the levels of histidine kinases (NME1/2) and global pHis in the cortex, and decreased glutamatergic transmission in mPFC upon CSDS. NME1/2 served as substrates of LHPP, with the Aspartic acid 17 (D17), Threonine 54 (T54), or D214 residue within LHPP being critical for its phosphatase activity. Finally, reintroducing LHPP, but not LHPP phosphatase-dead mutants, into the mPFC of LHPP-deficient mice reversed their behavioral and synaptic deficits upon CSDS. Together, these results demonstrate a critical role of LHPP in regulating stress-related depression and provide novel insight into the pathogenesis of MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LHPP deficiency induces depression-like behaviors in mice upon CSDS.
Fig. 2: LHPP in mPFC is essential for regulating CSDS-induced depression.
Fig. 3: LHPP dephosphorylates NME1/2.
Fig. 4: LHPP phosphatase activity in mPFC is essential for preventing CSDS-induced depression.
Fig. 5: LHPP phosphatase activity in mPFC is essential for restoring decreased glutamatergic transmission in NEX-Lhppf/f mice upon CSDS.

Similar content being viewed by others

References

  1. Depression and other common mental disorders: global health estimates. (World Health Organization 2017).

  2. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med. 2010;16:1328–32.

    Article  CAS  Google Scholar 

  3. Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Rahmoune H, Bahn S. Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci. 2012;262:657–66.

    Article  Google Scholar 

  4. Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Wesseling H, Rahmoune H, Bahn S. The need for phosphoproteomic approaches in psychiatric research. J Psychiatr Res. 2011;45:1404–6.

    Article  Google Scholar 

  5. Fuhs SR, Hunter T. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol. 2017;45:8–16.

    Article  CAS  Google Scholar 

  6. Hunter T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol Cell. 2022;82:2190–200.

    Article  CAS  Google Scholar 

  7. Boyer PD, Deluca M, Ebner KE, Hultquist DE, Peter JB. Identification of phosphohistidine in digests from a probable intermediate of oxidative phosphorylation. J Biol Chem. 1962;237:PC3306–PC8.

    Article  CAS  Google Scholar 

  8. Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Lab Investig. 2018;98:233–47.

    Article  CAS  Google Scholar 

  9. Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and histidine phosphorylation. Int J Mol Sci. 2020;21:5848.

    Article  CAS  Google Scholar 

  10. Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, et al. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell. 2006;24:665–75.

    Article  CAS  Google Scholar 

  11. Cai X, Srivastava S, Surindran S, Li Z, Skolnik EY. Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell. 2014;25:1244–50.

    Article  Google Scholar 

  12. Neff CD, Abkevich V, Packer JC, Chen Y, Potter J, Riley R, et al. Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol Psychiatry. 2009;14:621–30.

    Article  CAS  Google Scholar 

  13. Consortium C. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91.

    Article  Google Scholar 

  14. Knowles EE, Kent JW Jr., McKay DR, Sprooten E, Mathias SR, Curran JE, et al. Genome-wide linkage on chromosome 10q26 for a dimensional scale of major depression. J Affect Disord. 2016;191:123–31.

    Article  CAS  Google Scholar 

  15. Seal US, Binkley F. An inorganic pyrophosphatase of swine brain. J Biol Chem. 1957;228:193–9.

    Article  CAS  Google Scholar 

  16. Hiraishi H, Ohmagari T, Otsuka Y, Yokoi F, Kumon A. Purification and characterization of hepatic inorganic pyrophosphatase hydrolyzing imidodiphosphate. Arch Biochem Biophys. 1997;341:153–9.

    Article  CAS  Google Scholar 

  17. Hiraishi H, Yokoi F, Kumon A. 3-phosphohistidine and 6-phospholysine are substrates of a 56-kDa inorganic pyrophosphatase from bovine liver. Arch Biochem Biophys. 1998;349:381–7.

    Article  CAS  Google Scholar 

  18. Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis. 2001;31:85–94.

    Article  CAS  Google Scholar 

  19. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409:714–20.

    Article  CAS  Google Scholar 

  20. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84.

    Article  CAS  Google Scholar 

  21. Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron. 2003;37:751–64.

    Article  CAS  Google Scholar 

  22. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  Google Scholar 

  23. Bangasser DA, Cuarenta A. Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci. 2021;22:674–84.

    Article  CAS  Google Scholar 

  24. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    Article  CAS  Google Scholar 

  25. Goebbels S, Bormuth I, Bode U, Hermanson O, Schwab MH, Nave KA. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis. 2006;44:611–21.

    Article  CAS  Google Scholar 

  26. Covington HE 3rd, Kikusui T, Goodhue J, Nikulina EM, Hammer RP Jr., Miczek KA. Brief social defeat stress: long lasting effects on cocaine taking during a binge and zif268 mRNA expression in the amygdala and prefrontal cortex. Neuropsychopharmacology. 2005;30:310–21.

    Article  CAS  Google Scholar 

  27. Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010;30:16082–90.

    Article  CAS  Google Scholar 

  28. Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? Biochim Biophys Acta Mol Cell Res. 2019;1866:153–66.

    Article  CAS  Google Scholar 

  29. Hindupur SK, Colombi M, Fuhs SR, Matter MS, Guri Y, Adam K, et al. The protein histidine phosphatase LHPP is a tumour suppressor. Nature. 2018;555:678–82.

    Article  CAS  Google Scholar 

  30. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64:193–200.

    Article  CAS  Google Scholar 

  31. Veeraiah P, Noronha JM, Maitra S, Bagga P, Khandelwal N, Chakravarty S, et al. Dysfunctional glutamatergic and gamma-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression. Biol Psychiatry. 2014;76:231–8.

    Article  CAS  Google Scholar 

  32. Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: Evidence for over-inhibition. Neurosci Biobehav Rev. 2019;105:39–51.

    Article  CAS  Google Scholar 

  33. Yokoi F, Hiraishi H, Izuhara K. Molecular cloning of a cDNA for the human phospholysine phosphohistidine inorganic pyrophosphate phosphatase. J Biochem. 2003;133:607–14.

    Article  CAS  Google Scholar 

  34. Cui L, Gong X, Tang Y, Kong L, Chang M, Geng H, et al. Relationship between the LHPP gene polymorphism and resting-state brain activity in major depressive disorder. Neural Plast. 2016;2016:9162590.

    Article  Google Scholar 

  35. Cui L, Gong X, Chang M, Yin Z, Geng H, Song Y, et al. Association of LHPP genetic variation (rs35936514) with structural and functional connectivity of hippocampal-corticolimbic neural circuitry. Brain Imaging Behav. 2020;14:1025–33.

    Article  Google Scholar 

  36. Cui L, Wang F, Yin Z, Chang M, Song Y, Wei Y, et al. Effects of the LHPP gene polymorphism on the functional and structural changes of gray matter in major depressive disorder. Quant Imaging Med Surg. 2020;10:257–68.

    Article  Google Scholar 

  37. Charney DS, Manji HK. Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE. 2004;2004:re5.

    Article  Google Scholar 

  38. Dennis S, Charney MD. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry. 2004;161:195–216.

    Article  Google Scholar 

  39. Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12:539–46.

    Article  Google Scholar 

  40. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

    Article  CAS  Google Scholar 

  41. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    Article  CAS  Google Scholar 

  42. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–9.

    Article  CAS  Google Scholar 

  43. Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168:727–34.

    Article  Google Scholar 

  44. Shin S, Kwon O, Kang JI, Kwon S, Oh S, Choi J, et al. mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat Neurosci. 2015;18:1017–24.

    Article  CAS  Google Scholar 

  45. Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201:239–43.

    Article  Google Scholar 

  46. Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. 2020;25:2742–58.

    Article  Google Scholar 

  47. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10:223.

    Article  Google Scholar 

  48. Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Mol Psychiatry. 2017;22:760–73.

    Article  CAS  Google Scholar 

  49. Song C, Moyer JR Jr. Layer- and subregion-specific differences in the neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol. 2018;119:177–91.

    Article  CAS  Google Scholar 

  50. Pan HQ, Liu XX, He Y, Zhou J, Liao CZ, You WJ, et al. Prefrontal GABAA(delta)R promotes fear extinction through enabling the plastic regulation of neuronal intrinsic excitability. J Neurosci. 2022;42:5755–70.

    Article  CAS  Google Scholar 

  51. Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem. 1997;272:5525–32.

    Article  CAS  Google Scholar 

  52. Hippe HJ, Abu-Taha I, Wolf NM, Katus HA, Wieland T. Through scaffolding and catalytic actions nucleoside diphosphate kinase B differentially regulates basal and beta-adrenoceptor-stimulated cAMP synthesis. Cell Signal. 2011;23:579–85.

    Article  CAS  Google Scholar 

  53. Panda S, Srivastava S, Li Z, Vaeth M, Fuhs SR, Hunter T, et al. Identification of PGAM5 as a mammalian protein histidine phosphatase that plays a central role to negatively regulate CD4(+) T cells. Mol Cell. 2016;63:457–69.

    Article  CAS  Google Scholar 

  54. Di L, Srivastava S, Zhdanova O, Sun Y, Li Z, Skolnik EY. Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation. J Biol Chem. 2010;285:38765–71.

    Article  CAS  Google Scholar 

  55. Srivastava S, Panda S, Li Z, Fuhs SR, Hunter T, Thiele DJ, et al. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. Elife. 2016;5:e16093.

    Article  Google Scholar 

  56. Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H, et al. Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci USA. 2008;105:14442–6.

    Article  CAS  Google Scholar 

  57. Ku SM, Han MH. HCN channel targets for novel antidepressant treatment. Neurotherapeutics. 2017;14:698–715.

    Article  CAS  Google Scholar 

  58. Friedman AK, Juarez B, Ku SM, Zhang H, Calizo RC, Walsh JJ, et al. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat Commun. 2016;7:11671.

    Article  CAS  Google Scholar 

  59. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yu-Qiang Ding (Fudan University) for providing the NEX-Cre mice, Piliang Hao and Chengqian Zhang for assistance with mass spectrometry equipment at the Biological Mass Spectrometry Core Facility (ShanghaiTech University). This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 82125010 and 81930032 [to B-XP], 82271558 and 31771142 [to EF], 31660268 [to XL], 32100822 [to W-BC]), the China Postdoctoral Science Foundation (2021M700061, W-BC) and the National Key R&D Program of China (2021ZD0202704, B-XP).

Author information

Authors and Affiliations

Authors

Contributions

EF and DL conceived and designed the research project. DL, LuhuiL, W-BC, JC, Z-HZ, CZ, YZ, and EF performed experiments and collected data. ND and LeiL performed proteomic experiments and collected data. DL, W-BC, DR, TZ, SZ, B-XP and EF analyzed data. DL and W-BC prepared manuscript figures. EF, DL, and B-XP wrote the manuscript. BL, HJ, PC, SZ, XL, and TZ provided technical and intellectual support. All authors provided critical reviews of results and approved the manuscript.

Corresponding authors

Correspondence to Bing-Xing Pan or Erkang Fei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Li, L., Chen, WB. et al. LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity. Mol Psychiatry 28, 908–918 (2023). https://doi.org/10.1038/s41380-022-01893-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01893-0

This article is cited by

Search

Quick links