Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting PDK2 rescues stress-induced impaired brain energy metabolism

Abstract

Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CSDS induced depression-like behaviors in mice, and metabolic profile of CSDS mice and first-episode MDD patients.
Fig. 2: Expression of PDK and phosphorylated PDH in the mouse cortex following CSDS exposure.
Fig. 3: GR regulates PDK2 gene expression by binding to its promoter.
Fig. 4: Silencing PDK2 regulates oxygen consumption rate and ameliorates CORT-induced disturbance of TCA cycle carbon flux.
Fig. 5: PDK inhibition attenuates CSDS-induced depressive behaviors.
Fig. 6: GR-specific or PDK2-specific knockdown in neurons increases PDH activity and blocks CSDS-induced depressive behaviors.

Similar content being viewed by others

References

  1. Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci. 2019;20:686–701.

    Article  CAS  PubMed  Google Scholar 

  2. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Luo J, Leng Y, Yang Y, Zweifel LS, Palmiter RD, et al. Ablation of type III adenylyl cyclase in mice causes reduced neuronal activity, altered sleep pattern, and depression-like phenotypes. Biol Psychiatry. 2016;80:836–48.

    Article  CAS  PubMed  Google Scholar 

  4. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132:1820–32.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Attwell D, Laughlin S. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45.

    Article  CAS  PubMed  Google Scholar 

  6. Kolar D, Kleteckova L, Brozka H, Vales K. Brain energy metabolism and its role in animal models of depression, bipolar disorder, schizophrenia and autism. Neurosci Lett. 2021;760:136003.

    Article  CAS  PubMed  Google Scholar 

  7. Martin SA, Souder DC, Miller KN, Clark JP, Sagar AK, Eliceiri KW, et al. GSK3β Regulates Brain Energy Metabolism. Cell Rep. 2018;23:1922–31.e1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A O,U M, Lf B, A GC. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine. 2021;69:103474.

    Article  PubMed  Google Scholar 

  9. Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 2017;26:353–60.e353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang W, Xiao N, Zeng G, Bi D, Dai X, Mi X, et al. APOE4 genotype exacerbates the depression-like behavior of mice during aging through ATP decline. Translational Psychiatry. 2021;11:507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu J, Zhao Y, Park YK, Lee JY, Gao L, Zhao J, et al. Loss of PDK4 switches the hepatic NF-κB/TNF pathway from pro-survival to pro-apoptosis. Hepatology. 2018;68:1111–24.

    Article  CAS  PubMed  Google Scholar 

  12. Ryall JG, Cliff T, Dalton S, Sartorelli V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell. 2015;17:651–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindqvist D, Wolkowitz O, Picard M, Ohlsson L, Bersani F, Fernström J, et al. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacol. 2018;43:1557–64.

    Article  CAS  Google Scholar 

  14. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychia. 2010;67:360–8.

    Article  CAS  Google Scholar 

  15. Okamoto N, Viswanatha R, Bittar R, Li Z, Haga-Yamanaka S, Perrimon N, et al. A membrane transporter is required for steroid hormone uptake in drosophila. Dev Cell. 2018;47:294–305.e297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vyas S, Maatouk L. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes. CNS Neurol Disord Drug Targets. 2013;12:1175–93.

    CAS  PubMed  Google Scholar 

  17. Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharm. 2017;27:554–9.

    Article  CAS  Google Scholar 

  18. Solomon MB, Wulsin AC, Rice T, Wick D, Myers B, McKlveen J, et al. The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Horm Behav. 2014;65:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei Q, Fentress HM, Hoversten MT, Zhang L, Hebda-Bauer EK, Watson SJ, et al. Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization. Biol Psychiatry. 2012;71:224–31.

    Article  CAS  PubMed  Google Scholar 

  20. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22:527–36.

    Article  CAS  PubMed  Google Scholar 

  21. Paugh SW, Bonten EJ, Savic D, Ramsey LB, Thierfelder WE, Gurung P, et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet. 2015;47:607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roqueta-Rivera M, Esquejo RM, Phelan PE, Sandor K, Daniel B, Foufelle F, et al. SETDB2 links glucocorticoid to lipid metabolism through insig2a regulation. Cell Metab. 2016;24:474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Magomedova L, Cummins CL. Glucocorticoids and metabolic control. Handb Exp Pharmacol. 2016;233:73–93.

    Article  CAS  PubMed  Google Scholar 

  24. Yau JL, Seckl JR. Local amplification of glucocorticoids in the aging brain and impaired spatial memory. Front Aging Neurosci. 2012;4:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park S, Jeon JH, Min BK, Ha CM, Thoudam T, Park BY, et al. Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab J. 2018;42:270–81.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang G, Liu X, Xie J, Meng J, Ni X. PDK-1 mediated Hippo-YAP-IRS2 signaling pathway and involved in the apoptosis of non-small cell lung cancer cells. Biosci Rep. 2019;39:BSR20182099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998;329:191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeong JY, Jeoung NH, Park KG, Lee IK. Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes Metab J. 2012;36:328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Szafran-Pilch K, Gruca P, et al. Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology. 2016;233:255–66.

    Article  PubMed  Google Scholar 

  30. Jiang C, Lin WJ, Sadahiro M, Labonté B, Menard C, Pfau ML, et al. VGF function in depression and antidepressant efficacy. Mol Psychiatry. 2018;23:1632–42.

    Article  CAS  PubMed  Google Scholar 

  31. Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, et al. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci. 2018;48:2948–70.

    Article  PubMed  Google Scholar 

  32. Zou WJ, Song YL, Wu MY, Chen XT, You QL, Yang Q, et al. A discrete serotonergic circuit regulates vulnerability to social stress. Nat. Commun. 2020;11:4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carlson D, David LK, Gallagher NM, Vu MT, Shirley M, Hultman R, et al. Dynamically timed stimulation of corticolimbic circuitry activates a stress-compensatory pathway. Biol Psychiatry. 2017;82:904–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Poolman TM, Farrow SN, Matthews L, Loudon AS, Ray DW. Pin1 promotes GR transactivation by enhancing recruitment to target genes. Nucl Acids Res. 2013;41:8515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaz-Silva J, Gomes P, Jin Q, Zhu M, Zhuravleva V, Quintremil S, et al. Endolysosomal degradation of Tau and its role in glucocorticoid-driven hippocampal malfunction. EMBO J. 2018;37:e99084.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoefs SJ, Dieteren CE, Distelmaier F, Janssen RJ, Epplen A, Swarts HG, et al. NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet. 2008;82:1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liao EC, Hsu YT, Chuah QY, Lee YJ, Hu JY, et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 2014;5:e1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han YM, Kim MS, Jo J, Shin D, Kwon SH, Seo JB, et al. Decoding the temporal nature of brain GR activity in the NFκB signal transition leading to depressive-like behavior. Mol Psychiatry. 2021;26:5087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nasca C, Bigio B, Zelli D, Nicoletti F, McEwen BS. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol Psychiatry. 2015;20:755–63.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt MV, Sterlemann V, Wagner K, Niederleitner B, Ganea K, Liebl C, et al. Postnatal glucocorticoid excess due to pituitary glucocorticoid receptor deficiency: differential short- and long-term consequences. Endocrinology. 2009;150:2709–16.

    Article  CAS  PubMed  Google Scholar 

  41. Díaz-García CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 2017;26:361–74.e364.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng H, Yu WM, Shen J, Kang S, Hambardzumyan D, Li JY, et al. Mitochondrial oxidation of the carbohydrate fuel is required for neural precursor/stem cell function and postnatal cerebellar development. Sci Adv. 2018;4:eaat2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zacharias NM, Chan HR, Sailasuta N, Ross BD, Bhattacharya P. Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1-(13)C diethyl succinate. J Am Chem Soc. 2012;134:934–43.

    Article  CAS  PubMed  Google Scholar 

  44. Shao WH, Chen JJ, Fan SH, Lei Y, Xu HB, Zhou J, et al. Combined metabolomics and proteomics analysis of major depression in an animal model: perturbed energy metabolism in the chronic mild stressed rat cerebellum. Omics. 2015;19:383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen JJ, Xie J, Li WW, Bai SJ, Wang W, Zheng P, et al. Age-specific urinary metabolite signatures and functions in patients with major depressive disorder. Aging. 2019;11:6626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Głombik K, Detka J, Kurek A, Budziszewska B. Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front Neurosci. 2020;14:586939.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bu Q, Zhang LK, Guo X, Feng Y, Yan H, Cheng W, et al. The antidepressant effects and serum metabonomics of bifid triple viable capsule in a rat model of chronic unpredictable mild stress. Front Nutr. 2022;9:947697.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shen D, Zhao H, Gao S, Li Y, Cheng Q, Bi C, et al. Clinical serum metabolomics study on fluoxetine hydrochloride for depression. Neurosci Lett. 2021;746:135585.

    Article  CAS  PubMed  Google Scholar 

  49. Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH, Churchill E, et al. Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiat. 2013;3:e223.

    Article  CAS  Google Scholar 

  50. Sullivan CR, O’Donovan SM, McCullumsmith RE, Ramsey A. Defects in bioenergetic coupling in schizophrenia. Biol Psychiatry. 2018;83:739–50.

    Article  CAS  PubMed  Google Scholar 

  51. Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, et al. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep. 2019;27:1376–86.e1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jha MK, Jeon S, Suk K. Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Curr Neuropharmacol. 2012;10:393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakai N, Obayashi M, Nagasaki M, Sato Y, Fujitsuka N, Yoshimura A, et al. The abundance of mRNAs for pyruvate dehydrogenase kinase isoenzymes in brain regions of young and aged rats. Life Sci. 2000;68:497–503.

    Article  CAS  PubMed  Google Scholar 

  54. Lee SH, Choi BY, Kho AR, Hong DK, Kang BS, Park MK, et al. Combined Treatment of dichloroacetic acid and pyruvate increased neuronal survival after seizure. Nutrients. 2022;14:4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rahman MH, Bhusal A, Kim JH, Jha MK, Song GJ, Go Y, et al. Astrocytic pyruvate dehydrogenase kinase-2 is involved in hypothalamic inflammation in mouse models of diabetes. Nat Commun. 2020;11:5906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Halim ND, Mcfate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS, et al. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia. 2010;58:1168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, et al. Neuronal cells rearrangement during aging and neurodegenerative disease: metabolism, oxidative stress and organelles dynamic. Front Mol Neurosci. 2019;12:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19:609–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bolaños JP. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem. 2016;139:115–25.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138–42.

    Article  CAS  PubMed  Google Scholar 

  61. Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol. 2010;61:81.

    Article  PubMed  Google Scholar 

  62. Kim CS, Brager DH, Johnston D. Perisomatic changes in h-channels regulate depressive behaviors following chronic unpredictable stress. Mol Psychiatry. 2018;23:892–903.

    Article  CAS  PubMed  Google Scholar 

  63. Iyo AH, Feyissa AM, Chandran A, Austin MC, Regunathan S, Karolewicz B. Chronic corticosterone administration down-regulates metabotropic glutamate receptor 5 protein expression in the rat hippocampus. Neuroscience. 2010;169:1567–74.

    Article  CAS  PubMed  Google Scholar 

  64. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry. 2006;59:681–8.

    Article  PubMed  Google Scholar 

  65. Johnson TA, Chereji RV, Stavreva DA, Morris SA, Hager GL, Clark DJ. Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucl Acids Res. 2018;46:203–14.

    Article  CAS  PubMed  Google Scholar 

  66. Magomedova L, Tiefenbach J, Zilberman E, Le Billan F, Voisin V, Saikali M, et al. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucl Acids Res. 2019;47:2856–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwon HS, Huang B, Unterman TG, Harris RA. Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes. 2004;53:899–910.

    Article  CAS  PubMed  Google Scholar 

  68. Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, et al. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol. 2010;315:159–67.

    Article  CAS  PubMed  Google Scholar 

  69. Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, et al. Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol. 2017;54:4551–9.

    Article  CAS  PubMed  Google Scholar 

  70. Moffat C, Pacheco JG, Sharp S, Samson AJ, Bollan KA, Huang J, et al. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). Faseb J. 2015;29:2112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu X, Huang Y, Li S, Ge N, Li T, Wang Y, et al. Glucocorticoids reverse diluted hyponatremia through inhibiting arginine vasopressin pathway in heart failure rats. J Am Heart Assoc. 2020;9:e014950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perry R, Wang Y, Cline GW, Rabin-Court A, Song J, Dufour S, et al. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell. 2018;172:234–48.e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abemayor E, Kovachich GB, Haugaard N. Effects of dichloroacetate on brain pyruvate dehydrogenase. J Neurochem. 1984;42:38–42.

    Article  CAS  PubMed  Google Scholar 

  74. Check JH, Wilson C, Cohen R, Sarumi M. Evidence that mifepristone, a progesterone receptor antagonist, can cross the blood brain barrier and provide palliative benefits for glioblastoma multiforme grade IV. Anticancer Res. 2014;34:2385–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all volunteers, patients, and their families for their contribution in this study.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81602846; No. 82272253), Natural Science Foundation of Shandong Province (No. ZR2021MH145), Taishan Scholar Project of Shandong Province (No. tsqn201812159), China International Medical Foundation (No. Z-2018-35-2002), Research Fund for Lin He’s Academician Workstation of New Medicine and Clinical Translation of Jining Medical University (No. JYHL2021FMS19), and Key Research and Development Projects of Jining City (No. 2021YXNS084).

Author information

Authors and Affiliations

Authors

Contributions

CW and CC wrote the manuscript. PX and LZ performed the in vitro experiments. CW, CC and HX conducted the in vivo experiments. BC and PJ conducted data analysis. PJ contributed to study conception and edited the manuscript.

Corresponding author

Correspondence to Pei Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cui, C., Xu, P. et al. Targeting PDK2 rescues stress-induced impaired brain energy metabolism. Mol Psychiatry 28, 4138–4150 (2023). https://doi.org/10.1038/s41380-023-02098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02098-9

This article is cited by

Search

Quick links