Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

FGFR3-TACC3 is an oncogenic fusion protein in respiratory epithelium

Abstract

Structural rearrangements of the genome can drive lung tumorigenesis through the generation of fusion genes with oncogenic properties. Advanced genomic approaches have identified the presence of a genetic fusion between fibroblast growth factor receptor 3 (FGFR3) and transforming acidic coiled-coil 3 (TACC3) in non-small cell lung cancer (NSCLC), providing a novel target for FGFR inhibition. To interrogate the functional consequences of the FGFR3–TACC3 fusion in the transformation of lung epithelial cells, we generated a novel transgenic mouse model that expresses FGFR3–TACC3 concomitant with loss of the p53 tumor suppressor gene. Intranasal delivery of an Ad5-CMV-Cre virus promoted seromucinous glandular transformation of olfactory cells lining the nasal cavities of FGFR3–TACC3 (LSLF3T3) mice, which was further accelerated upon loss of p53 (LSLF3T3/p53). Surprisingly, lung tumors failed to develop in intranasally infected LSLF3T3 and LSLF3T3/p53 mice. In line with these observations, we demonstrated that intranasal delivery of Ad5-CMV-Cre induces widespread Cre-mediated recombination in the olfactory epithelium. Intra-tracheal delivery of Ad5-CMV-Cre into the lungs of LSLF3T3 and LSLF3T3/p53 mice, however, resulted in the development of lung adenocarcinomas. Taken together, these findings provide in vivo evidence for an oncogenic function of FGFR3–TACC3 in respiratory epithelium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Society AC. Cancer facts & figures 2016. Atlanta: American Cancer Society; 2016.

    Google Scholar 

  2. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  CAS  Google Scholar 

  3. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  4. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  5. Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23:227–38 e3.

    Article  CAS  Google Scholar 

  6. Soda M, Young Lim C, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  Google Scholar 

  7. Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. New Engl J Med. 2014;371:2167–77.

    Article  Google Scholar 

  8. Majewski IJ, Mittempergher L, Davidson NM, Bosma A, Willems SM, Horlings HM, et al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J Pathol. 2013;230:270–6.

    Article  CAS  Google Scholar 

  9. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3:636–47.

    Article  CAS  Google Scholar 

  10. Yuan L, Liu Z-H, Lin Z-R, Xu L-H, Zhong Q, Zeng M-S. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol Ther. 2014;15:1613.

    Article  CAS  Google Scholar 

  11. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337:1231–5.

    Article  CAS  Google Scholar 

  12. Carneiro BA, Elvin JA, Kamath SD, Ali SM, Paintal AS, Restrepo A, et al. gTACC3: a novel gene fusion in cervical cancer. Gynecol Oncol Rep. 2015;13:53–6.

    Article  Google Scholar 

  13. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Human Mol Genet. 2013;22:795–803.

    Article  CAS  Google Scholar 

  14. Capelletti M, Dodge ME, Ercan D, Hammerman PS, Park S-I, Kim J, et al. Identification of recurrent FGFR3-TACC3 fusion oncogenes from lung adenocarcinoma. Clin Cancer Res. 2014;20:6551–8.

    Article  CAS  Google Scholar 

  15. Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Investig. 2013;123:855–65.

    CAS  PubMed  Google Scholar 

  16. Kwon MC, Berns A. Mouse models for lung cancer. Mol Oncol. 2013;7:165–77.

    Article  CAS  Google Scholar 

  17. Sharpless NE, Depinho RA. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov. 2006;5:741–54.

    Article  CAS  Google Scholar 

  18. Chen Z, Sasaki T, Tan X, Carretero J, Shimamura T, Li D, et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res. 2010;70:9827–36.

    Article  CAS  Google Scholar 

  19. Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci Usa. 2008;105:19893–7.

    Article  CAS  Google Scholar 

  20. Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K, Lambooij JP, et al. SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell. 2016;30:519–32.

    Article  CAS  Google Scholar 

  21. Yin Y, Betsuyaku T, Garbow JR, Miao J, Govindan R, Ornitz DM. Rapid induction of lung adenocarcinoma by fibroblast growth factor 9 signaling through FGF receptor 3. Cancer Res. 2013;73:5730–41.

    Article  CAS  Google Scholar 

  22. DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064–72.

    Article  CAS  Google Scholar 

  23. Arimoto Y, Nagata H, Isegawa N, Kumahara K, Isoyama K, Konno A, et al. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa. Acta Otolaryngol. 2002;122:627–33.

    Article  CAS  Google Scholar 

  24. Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS ONE. 2011;6:e20351.

    Article  CAS  Google Scholar 

  25. Huijbers IJ, Bin Ali R, Pritchard C, Cozijnsen M, Kwon MC, Proost N, et al. Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells. EMBO Mol Med. 2014;6:212–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA. 2009;106:12771–5.

    Article  CAS  Google Scholar 

  27. Jonkers J,Meuwissen R,Gulden Hvd,Peterse H,Valk Mvd,Berns A, Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breat cancer. Nat Genet. 2001;29:418–25.

    Article  CAS  Google Scholar 

  28. Hatch TF, Gross P. Pulmonary deposition and retention of inhaled aerosols. New York: Academic Press; 1964.

    Chapter  Google Scholar 

  29. Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. PNAS. 2001;98:6074–9.

    Article  CAS  Google Scholar 

  30. Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, et al. A Lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997;89:693–702.

    Article  CAS  Google Scholar 

  31. Nelson KN, Meyer AN, Siari A, Campos AR, Motamedchaboki K, Donoghue DJ. Oncogenic gene fusion FGFR3-TACC3 is regulated by tyrosine phosphorylation. Mol Cancer Res. 2016;14:458-69.

    Article  CAS  Google Scholar 

  32. Daly C, Castanaro C, Zhang W, Zhang Q, Wei Y, Ni M, et al. FGFR3-TACC3 fusion proteins act as naturally occurring drivers of tumor resistance by functionally substituting for EGFR/ERK signaling. Oncogene. 2016;36:471–81.

    Article  Google Scholar 

  33. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605.

    Article  CAS  Google Scholar 

  34. Johnson VJ, Yucesoy B, Reynolds JS, Fluharty K, Wang W, Richardson D, et al. Inhalation of toluene diisocyanate vapor induces allergic rhinitis in mice. J Immunol. 2007;179:1864–71.

    Article  CAS  Google Scholar 

  35. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song J-Y, Berns A. Cell of Origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell. 2011;19:754–64.

    Article  CAS  Google Scholar 

  36. Leung C, Coulombe P, Reed R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci. 2007;10:720–6.

    Article  CAS  Google Scholar 

  37. Duggan C, Ngai J. Scent of a stem cell. Nat Neurosci. 2007;10:673–4.

    Article  CAS  Google Scholar 

  38. Damjanovic D, Zhang X, Mu J, Fe Medina M, Xing Z. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Genet Vaccines Ther. 2008;6:5.

    Article  Google Scholar 

  39. Doi K, Nibu K, Ishida H, Okado H, Terashima T. Adenovirus-mediated gene transfer in olfactory epithelium and olfactory bulb: a long-term study. Ann Ontol Rhinol Larygol. 2005;114:629–33.

    Article  Google Scholar 

  40. Zhao H, Otaki J, Firestein S. Adenovirus-mediated gene transfer in olfactory neurons in vivo. J Neurobiol. 1996;30:521–30.

    Article  CAS  Google Scholar 

  41. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 2005;65:10280–8.

    Article  CAS  Google Scholar 

  42. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017;31:270–85.

    Article  CAS  Google Scholar 

  43. Sutherland KD, Song JY, Kwon MC, Proost N, Zevenhoven J, Berns A. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc Natl Acad Sci USA. 2014;111:4952–7.

    Article  CAS  Google Scholar 

  44. Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG, et al. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell. 2013;50:185–99.

    Article  CAS  Google Scholar 

  45. Jordan EJ, Kim HR, Arcila ME, Barron D, Chakravarty D, Gao J, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7:596–609.

    Article  CAS  Google Scholar 

  46. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.

    Article  CAS  Google Scholar 

  47. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  Google Scholar 

  48. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  Google Scholar 

  49. Mukhopadhyay A, Berrett KC, Kc U, Clair PM, Pop SM, Carr SR, et al. Sox2 cooperates with Lkb1 loss in a mouse model of squamous cell lung cancer. Cell Rep. 2014;8:40–9.

    Article  CAS  Google Scholar 

  50. Sutherland KD, Berns A. Cell of origin of lung cancer. Mol Oncol. 2010;4:397–403.

    Article  Google Scholar 

  51. Weeden CE, Chen Y, Ma SB, Hu Y, Ramm G, Sutherland KD, et al. Lung basal stem cells rapidly repair DNA damage using the error-prone nonhomologous end-joining pathway. PLoS Biol. 2017;15:e2000731.

    Article  Google Scholar 

  52. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48:607–16.

    Article  CAS  Google Scholar 

  53. Xu C, Fillmore CM, Koyama S, Wu H, Zhao Y, Chen Z, et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell. 2014;25:590–604.

    Article  CAS  Google Scholar 

  54. Best SA, Nwaobasi AN, Schmults CD, Ramsey MR. CCAR2 is required for proliferation and tumor maintenance in human squamous cell carcinoma. J Invest Dermatol. 2017;137:506–12.

    Article  CAS  Google Scholar 

  55. Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis. 2006;44:23–8.

    Article  CAS  Google Scholar 

  56. Leong HS, Chen K, Hu Y, Lee S, Corbin J, Pakusch M, et al. Epigenetic regulator Smchd1 functions as a tumor suppressor. Cancer Res. 2013;73:1591–9.

    Article  CAS  Google Scholar 

  57. Best SA, De Souza DP, Kersbergen A, Policheni AN, Dayalan S, Tull D, et al. Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 2018;27:935–43 e4.

    Article  CAS  Google Scholar 

  58. Best SA, Kersbergen A, Asselin-Labat ML, Sutherland KD. Combining cell type-restricted adenoviral targeting with immunostaining and flow cytometry to identify cells-of-origin of lung cancer. Methods Mol Biol. 2018;1725:15–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Alvarado, L. Scott, H. Johnson, K. Birchall, and L. Mackiewicz for animal husbandry, E. Tsui and C. Tsui in the WEHI Histology Facility for expert support and P. Maltezos for preparation of the nasal cavity graphic image. The authors thank T. Wilson, J. Mighall, and J. Pasquet for technical support and W. Alexander for useful discussions and critically reading the manuscript. This work was supported in part by a Worldwide Cancer Research Project Grant [14–0433]. SAB is supported by a Victorian Cancer Agency (VCA) Early Career Seed Grant (ECSG16001); M-LA-L is supported by a Viertel Foundation Senior Medical Research Fellowship; KDS is supported by the Peter and Julie Alston Centenary Fellowship. This work was made possible through Victorian Government Operational Infrastructure Support and Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate D. Sutherland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Best, S.A., Harapas, C.R., Kersbergen, A. et al. FGFR3-TACC3 is an oncogenic fusion protein in respiratory epithelium. Oncogene 37, 6096–6104 (2018). https://doi.org/10.1038/s41388-018-0399-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0399-5

This article is cited by

Search

Quick links