Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation

Abstract

Hyperactivation of SRC-family protein kinases (SFKs) contributes to the initiation and progression of human colorectal cancer (CRC). Since oncogenic mutations of SFK genes are rare in human CRC, we investigated if SFK hyperactivation is linked to dysregulation of their upstream inhibitors, C-terminal SRC kinase (CSK) and its homolog CSK-homologous kinase (CHK/MATK). We demonstrate that expression of CHK/MATK but not CSK was significantly downregulated in CRC cell lines and primary tumours compared to normal colonic tissue. Investigation of the mechanism by which CHK/MATK expression is down-regulated in CRC cells uncovered hypermethylation of the CHK/MATK promoter in CRC cell lines and primary tumours. Promoter methylation of CHK/MATK was also observed in several other tumour types. Consistent with epigenetic silencing of CHK/MATK, genetic deletion or pharmacological inhibition of DNA methyltransferases increased CHK/MATK mRNA expression in CHK/MATK-methylated colon cancer cell lines. SFKs were hyperactivated in CHK/MATK-methylated CRC cells despite expressing enzymatically active CSK, suggesting loss of CHK/MATK contributes to SFK hyperactivation. Re-expression of CHK/MATK in CRC cell lines led to reduction in SFK activity via a non-catalytic mechanism, a reduction in anchorage-independent growth, cell proliferation and migration in vitro, and a reduction in tumour growth and metastasis in a zebrafish embryo xenotransplantation model in vivo, collectively identifying CHK/MATK as a novel putative tumour suppressor gene in CRC. Furthermore, our discovery that CHK/MATK hypermethylation occurs in the majority of tumours warrants its further investigation as a diagnostic marker of CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHK/MATK expression is suppressed in colorectal tumours.
Fig. 2: Down-regulation of CHK/MATK expression correlates with activation of Src in colorectal cancer cell lines.
Fig. 3: The CHK/MATK promoter is heavily methylated in four representative colorectal cancer cell lines.
Fig. 4: Quantitative MS-PCR analysis showing CHK/MATK promoter hypermethylation in a panel of CRC cell lines and increased CHK/MATK promoter methylation in primary colorectal cancers.
Fig. 5: CHK/MATK hypermethylation in colorectal cancers occurs primarily at the gene promoter and flanking regions.
Fig. 6: Treatment of colorectal cancer cells with the demethylating agent 5-Aza-2′-deoxycytidine (Aza-dC) induces de-repression of CHK/MATK expression.
Fig. 7: Effects of expression of recombinant CHK/MATK on Src kinase activity and phosphorylation state of HCT116 CRC cells.
Fig. 8: Effects of expression of recombinant CHK/MATK in HCT116 CRC cells on cell migration, anchorage-independent growth and proliferation in vitro and on growth and survival in vivo in zebrafish xenograft.

Similar content being viewed by others

References

  1. Cordero JB, Ridgway RA, Valeri N, Nixon C, Frame MC, Muller WJ, et al. c-Src drives intestinal regeneration and transformation. EMBO J. 2014;33:1474–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Park J, Meisler AI, Cartwright CA. c-Yes tyrosine kinase activity in human colon carcinoma. Oncogene. 1993;8:2627–35.

    CAS  PubMed  Google Scholar 

  3. Poh AR, Love CG, Masson F, Preaudet A, Tsui C, Whitehead L, et al. Inhibition of hematopoietic cell kinase activity suppresses myeloid cell-mediated colon cancer progression. Cancer Cell. 2017;31:563–75 e565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, et al. Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet. 1999;21:187–90.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoekstra E, Das AM, Swets M, Cao W, van der Woude CJ, Bruno MJ, et al. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome. Oncotarget. 2016;7:21922–38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Avraham S, Jiang S, Ota S, Fu Y, Deng B, Dowler LL, et al. Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product. J Biol Chem. 1995;270:1833–42.

    Article  CAS  PubMed  Google Scholar 

  8. Klages S, Adam D, Class K, Fargnoli J, Bolen JB, Penhallow RC. Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family. Proc Natl Acad Sci USA. 1994;91:2597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature. 1991;351:69–72.

    Article  CAS  PubMed  Google Scholar 

  10. Chong YP, Mulhern TD, Cheng HC. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)-endogenous negative regulators of Src-family protein kinases. Growth Factors. 2005;23:233–44.

    Article  CAS  PubMed  Google Scholar 

  11. Oneyama C, Hikita T, Enya K, Dobenecker MW, Saito K, Nada S, et al. The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell. 2008;30:426–36.

    Article  CAS  PubMed  Google Scholar 

  12. Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 2000;404:999–1003.

    Article  CAS  PubMed  Google Scholar 

  13. Boczek EE, Luo Q, Dehling M, Ropke M, Mader SL, Seidl A, et al. Autophosphorylation activates c-Src kinase through global structural rearrangements. J Biol Chem. 2019;294:13186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooper JA, Gould KL, Cartwright CA, Hunter T. Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science. 1986;231:1431–4.

    Article  CAS  PubMed  Google Scholar 

  15. Purchio AF, Wells SK, Collett MS. Increase in the phosphotransferase specific activity of purified Rous sarcoma virus pp60v-src protein after incubation with ATP plus Mg2+. Mol Cell Biol. 1983;3:1589–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 1997;385:595–602.

    Article  CAS  PubMed  Google Scholar 

  17. Chong YP, Mulhern TD, Zhu HJ, Fujita DJ, Bjorge JD, Tantiongco JP, et al. A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity. J Biol Chem. 2004;279:20752–66.

    Article  CAS  PubMed  Google Scholar 

  18. Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem. 2000;275:41439–46.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu S, Bjorge JD, Fujita DJ. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 2007;67:10129–37.

    Article  CAS  PubMed  Google Scholar 

  20. Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chueh AC, et al. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal. 2017;15:29.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chong YP, Chan AS, Chan KC, Williamson NA, Lerner EC, Smithgall TE, et al. C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. J Biol Chem. 2006;281:32988–99.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu S, Bjorge JD, Cheng HC, Fujita DJ. Decreased CHK protein levels are associated with Src activation in colon cancer cells. Oncogene. 2008;27:2027–34.

    Article  CAS  PubMed  Google Scholar 

  23. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, et al. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell. 2017;21:78–90 e76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schneider C, O’Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol. 2019;19:584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bjorge JD, Bellagamba C, Cheng HC, Tanaka A, Wang JH, Fujita DJ. Characterization of two activated mutants of human pp60c-src that escape c-Src kinase regulation by distinct mechanisms. J Biol Chem. 1995;270:24222–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kemble DJ, Sun G. Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci USA. 2009;106:5070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74:3238–47.

    Article  CAS  PubMed  Google Scholar 

  29. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  30. Chow LM, Jarvis C, Hu Q, Nye SH, Gervais FG, Veillette A, et al. Ntk: a Csk-related protein-tyrosine kinase expressed in brain and T lymphocytes. Proc Natl Acad Sci USA. 1994;91:4975–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McVicar DW, Lal BK, Lloyd A, Kawamura M, Chen YQ, Zhang X, et al. Molecular cloning of lsk, a carboxyl-terminal src kinase (csk) related gene, expressed in leukocytes. Oncogene. 1994;9:2037–44.

    CAS  PubMed  Google Scholar 

  32. Huang WY, Hsu SD, Huang HY, Sun YM, Chou CH, Weng SL, et al. MethHC: a database of DNA methylation and gene expression in human cancer. Nucleic Acids Res. 2015;43:D856–61.

    Article  CAS  PubMed  Google Scholar 

  33. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.

    Article  CAS  PubMed  Google Scholar 

  34. Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. Am J Cancer Res. 2012;2:357–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong X, Chen J, Xie W, Brown SM, Cai Y, Wu K, et al. Defining UHRF1 domains that support maintenance of human colon cancer dna methylation and oncogenic properties. Cancer Cell. 2019;35:633–48 e637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo Y, Wong CJ, Kaz AM, Dzieciatkowski S, Carter KT, Morris SM, et al. Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology. 2014;147:418–29 e418.

    Article  CAS  PubMed  Google Scholar 

  37. Luebeck GE, Hazelton WD, Curtius K, Maden SK, Yu M, Carter KT, et al. Implications of epigenetic drift in colorectal neoplasia. Cancer Res. 2019;79:495–504.

    Article  CAS  PubMed  Google Scholar 

  38. Hesson LB, Ng B, Zarzour P, Srivastava S, Kwok CT, Packham D, et al. Integrated genetic, epigenetic, and transcriptional profiling identifies molecular pathways in the development of laterally spreading tumors. Mol Cancer Res. 2016;14:1217–28.

    Article  CAS  PubMed  Google Scholar 

  39. Druliner BR, Wang P, Bae T, Baheti S, Slettedahl S, Mahoney D, et al. Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Sci Rep. 2018;8:3161.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest. 2014;124:1283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carethers JM. Fecal DNA testing for colorectal cancer screening. Annu Rev Med. 2020;71:59–69.

    Article  CAS  PubMed  Google Scholar 

  42. A stool DNA test (Cologuard) for colorectal cancer screening. JAMA. 2014;312:2566.

  43. Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol. 2018;53:535–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sicheri F, Moarefi I, Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck. Nature. 1997;385:602–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lerner EC, Smithgall TE. SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat Struct Biol. 2002;9:365–9.

    CAS  PubMed  Google Scholar 

  46. Lerner EC, Trible RP, Schiavone AP, Hochrein JM, Engen JR, Smithgall TE. Activation of the Src family kinase Hck without SH3-linker release. J Biol Chem. 2005;280:40832–7.

    Article  CAS  PubMed  Google Scholar 

  47. Constancio-Lund SS, Brabek J, Hanks SK. Src transformation of colonic epithelial cells: enhanced anchorage-independent growth in an Apc(+/min) background. Mol Carcinog. 2009;48:156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones RJ, Avizienyte E, Wyke AW, Owens DW, Brunton VG, Frame MC. Elevated c-Src is linked to altered cell-matrix adhesion rather than proliferation in KM12C human colorectal cancer cells. Br J Cancer. 2002;87:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scott AJ, Song EK, Bagby S, Purkey A, McCarter M, Gajdos C, et al. Evaluation of the efficacy of dasatinib, a Src/Abl inhibitor, in colorectal cancer cell lines and explant mouse model. PLoS One. 2017;12:e0187173.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Welman A, Cawthorne C, Ponce-Perez L, Barraclough J, Danson S, Murray S, et al. Increases in c-Src expression level and activity do not promote the growth of human colorectal carcinoma cells in vitro and in vivo. Neoplasia. 2006;8:905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888–902 e1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

O. Sieber is a NHMRC Senior Research Fellow (GNT1136119); grant support to H.-J. Zhu: NHMRC project grant #628727, grant support to H.-C. Cheng: NHMRC project grant # 1050486 and Australian Brain Foundation, grant support to A. Dhillon: NHMRC project grants #1141906. J. Mariadason was supported by a NHMRC Senior Research fellowship (GNT1046092). F. Hollande received grants from the Tour de Cure Foundation, Australia (Senior Project grant) and the National Health and Medical Research Council of Australia (Grant #1164081).

Author information

Authors and Affiliations

Authors

Contributions

Conception, experimental design and data analysis: ACC, GA, NN, H-CC, H-JZ, HV, HN, JB, DJF, DM, OS, FH, AD, FB and JM. Performing experiments: ACC, GA, NN, MF, JS, DSL, H-JZ, JB, IL, AS and FB. Preparation of the manuscript: ACC, Y-PC, JPL, GA, NN, H-CC, H-JZ, HV, HN, JB, DJF, OS, FH, FB, AD and JM.

Corresponding authors

Correspondence to Anderly C. Chüeh or Heung-Chin Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chüeh, A.C., Advani, G., Foroutan, M. et al. CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Oncogene 40, 3015–3029 (2021). https://doi.org/10.1038/s41388-021-01755-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01755-z

This article is cited by

Search

Quick links