Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene “TLR2 activation” signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene set enrichment analysis (GSEA) of AmpliSeq transcriptome data identifies enrichment for innate immune gene networks/pathways, in particular the TLR family, in PDAC.
Fig. 2: AmpliSeq transcriptome data identifies deregulated expression of specific innate immune TLR family members in PDAC.
Fig. 3: Increased growth responsiveness of human PDAC cell lines to TLR2 ligand stimulation.
Fig. 4: Antibody-mediated therapeutic blockade of TLR2 suppresses the growth potential of human PDAC cell line tumour xenografts.
Fig. 5: Anti-tumour activity of antibody-mediated TLR2 blockade in naïve and humanised patient-derived PDAC xenografts.
Fig. 6: Identification of a 4-gene TLR2 activation signature with prognostic power in PDAC patients.
Fig. 7: Elevated expression and activation of TLR2 confers chemoresistance in PDAC.

Similar content being viewed by others

Data availability

The datasets (including accession codes or web links to publicly available datasets) and analyses generated from this current study are available upon reasonable request to the corresponding author.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388:73–85.

    Article  CAS  PubMed  Google Scholar 

  3. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  CAS  Google Scholar 

  4. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  CAS  PubMed  Google Scholar 

  5. Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat Rev Clin Oncol. 2020;17:108–23.

    Article  PubMed  Google Scholar 

  6. Amrutkar M, Gladhaug IP. Pancreatic cancer chemoresistance to gemcitabine. Cancers. 2017;9:157.

    Article  PubMed Central  CAS  Google Scholar 

  7. Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46:994–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744–54.

    Article  CAS  PubMed  Google Scholar 

  9. Chantrill LA, Nagrial AM, Watson C, Johns AL, Martyn-Smith M, Simpson S, et al. Precision medicine for advanced pancreas cancer: the Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. Clin Cancer Res. 2015;21:2029–37.

    Article  CAS  PubMed  Google Scholar 

  10. Biankin AV, Hudson TJ. Somatic variation and cancer: therapies lost in the mix. Hum Genet. 2011;130:79–91.

    Article  PubMed  Google Scholar 

  11. Berry W, Lundy J, Croagh D, Jenkins BJ. Reviewing the utility of EUS FNA to advance precision medicine in pancreatic cancer. Cancers. 2018;10:E35. pii

    Article  PubMed  CAS  Google Scholar 

  12. Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Ther Adv Gastroenterol. 2017;10:168–94.

    Article  CAS  Google Scholar 

  13. Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32:185–203.

    Article  CAS  Google Scholar 

  14. Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pancreatic cancer from bench to clinical application: an updated review. Medicine. 2016;95:e5541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steele CW, Gill NAK, Jamieson NB, Carter CR. Targeting inflammation in pancreatic cancer: clinical translation. World J Gastrointest Oncol. 2016;8:380–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernández-Porras I, Cañamero M, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell. 2011;19:728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11:291–302.

    Article  CAS  PubMed  Google Scholar 

  18. Garcea G, Ladwa N, Neal CP, Metcalfe MS, Dennison AR, Berry DP, et al. Preoperative neutrophil-to-lymphocyte ratio (NLR) is associated with reduced disease-free survival following curative resection of pancreatic adenocarcinoma. World J Surg. 2011;35:868–72.

    Article  CAS  PubMed  Google Scholar 

  19. Roshani R, McCarthy F, Hagemann T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett. 2014;345:157–63.

    Article  CAS  PubMed  Google Scholar 

  20. Knudsen ES, Vail P, Balaji U, Ngo H, Botros IW, Makarov V, et al. Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunologic markers. Clin Cancer Res. 2017;23:4429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao L, Zeng XP, Xin L, Wang D, Pan J, Bi YW, et al. Incidence of and risk factors for pancreatic cancer in chronic pancreatitis: a cohort of 1656 patients. Dig Liver Dis. 2017;49:1249–56.

    Article  PubMed  Google Scholar 

  22. Sperb N, Tsesmelis M, Wirth T. Crosstalk between tumor and stromal cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2020;21:5486.

    Article  CAS  PubMed Central  Google Scholar 

  23. Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144:1210–9.

    Article  PubMed  Google Scholar 

  24. Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, et al. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 2018;8:5072–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gay NJ, Symmons M, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14:546–58.

    Article  CAS  PubMed  Google Scholar 

  26. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  27. West AC, Jenkins BJ. Inflammatory and non-inflammatory roles for Toll-like receptors in gastrointestinal cancer. Curr Pharm Des. 2015;21:2968–77.

    Article  CAS  PubMed  Google Scholar 

  28. Vaz J, Andersson R. Intervention on toll-like receptors in pancreatic cancer. World J Gastroenterol. 2014;20:5808–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hamzah J, Altin JG, Herringson T, Parish CR, Hämmerling GJ, O’Donoghue H, et al. Targeted liposomal delivery of TLR9 ligands activates spontaneous antitumor immunity in an autochthonous cancer model. J Immunol. 2009;183:1091–8.

    Article  CAS  PubMed  Google Scholar 

  30. Pratesi G, Petrangolini G, Tortoreto M, Addis A, Belluco S, Rossini A, et al. Therapeutic synergism of gemcitabine and CpG-oligodeoxynucleotides in an orthotopic human pancreatic carcinoma xenograft. Cancer Res. 2005;65:6388–93.

    Article  CAS  PubMed  Google Scholar 

  31. Rosa R, Melisi D, Damiano V, Bianco R, Garofalo S, Gelardi T, et al. Toll-like receptor 9 agonist IMO cooperates with cetuximab in K-ras mutant colorectal and pancreatic cancers. Clin Cancer Res. 2011;17:6531–41.

    Article  CAS  PubMed  Google Scholar 

  32. Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N, et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest. 2012;122:4118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 2015;212:2077–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209:1671–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu C, Sui S, Shang Y, Yu Z, Han J, Zhang G, et al. The landscape of immune cell infiltration and its clinical implications of pancreatic ductal adenocarcinoma. J Adv Res. 2020;24:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pu N, Chen Q, Gao S, Liu G, Zhu Y, Yin L, et al. Genetic Landscape of Prognostic Value in Pancreatic Ductal Adenocarcinoma Microenvironment. Ann Transl Med. 2019;7:645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berry W, Algar E, Kumar B, Desmond C, Swan M, Jenkins BJ, et al. Endoscopic ultrasound-guided fine-needle aspirate-derived preclinical pancreatic cancer models reveal panitumumab sensitivity in KRAS wild-type tumors. Int J Cancer. 2017;140:2331–43.

    Article  CAS  PubMed  Google Scholar 

  38. Chou A, Froio D, Nagrial AM, Parkin A, Murphy KJ, Chin VT, et al. Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut. 2018;67:2142–55.

    Article  CAS  PubMed  Google Scholar 

  39. West AC, Tang K, Tye H, Yu L, Deng N, Najdovska M, et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36:5134–44.

    Article  CAS  PubMed  Google Scholar 

  40. Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai TA, Chen WC, et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech. 2015;8:1311–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneider CA, Rasband W, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115:421–32.

    Article  CAS  PubMed  Google Scholar 

  43. Saad MI, Alhayyani S, McLeod L, Yu L, Alanazi M, Deswaerte V, et al. ADAM17 selectively activates the IL-6 trans-signaling/ERK MAPK axis in KRAS-addicted lung cancer. EMBO Mol Med. 2019;11:e9976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. R Core Team. R: a language and environment for statistical computing. Vienna, Austria; R Foundation for Statistical Computing: 2019. https://www.R-project.org.

  45. Robinson M, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  46. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015;43:e97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics. 2009;25:765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;17:e133.

    Article  CAS  Google Scholar 

  51. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45:D331–D8.

    Article  CAS  Google Scholar 

  53. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;14:1846–7.

    Article  CAS  Google Scholar 

  55. Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ, et al. Single sample scoring of molecular phenotypes. BMC Bioinforma. 2018;19:404.

    Article  CAS  Google Scholar 

  56. Li W, Turner A, Aggarwal P, Matter A, Storvick E, Arnett DK, et al. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genomics. 2015;16:1069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tye H, Jenkins BJ. Tying the knot between cytokine and toll-like receptor signaling in gastrointestinal tract cancers. Cancer Sci. 2013;104:1139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tye H, Kennedy CL, Najdovska M, McLeod L, McCormack W, Hughes N, et al. STAT3-Driven Upregulation of TLR2 Promotes Gastric Tumorigenesis Independent of Tumor Inflammation. Cancer Cell. 2012;22:466–78.

    Article  CAS  PubMed  Google Scholar 

  60. Liu YD, Yu L, Ying L, Balic J, Gao H, Deng NT, et al. Toll-like receptor 2 regulates metabolic reprogramming in gastric cancer via superoxide dismutase 2. Int J Cancer. 2019;144:3056–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kennedy CL, Najdovska M, Tye H, McLeod L, Yu L, Jarnicki A, et al. Differential role of MyD88 and Mal/TIRAP in TLR2-mediated gastric tumourigenesis. Oncogene. 2014;33:2540–6.

    Article  CAS  PubMed  Google Scholar 

  62. Pearson T, Greiner DL, Shultz LD. Creation of "humanized" mice to study human immunity. Curr Protoc Immunol. 2008;81:1–15.

    Article  Google Scholar 

  63. Flo TH, Halaas O, Torp S, Ryan L, Lien E, Dybdahl B, et al. Differential expression of Toll-like receptor 2 in human cells. J Leukoc Biol. 2001;69:474–81.

    Article  CAS  PubMed  Google Scholar 

  64. Torphy RJ, Zuwen Y, Schulick RD. Immunotherapy for pancreatic cancer: barriers and breakthroughs. Ann Gastroenterol Surg. 2018;2:274–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grimmig T, Moench R, Kreckel J, Haack S, Rueckert F, Rehder R, et al. Toll like receptor 2, 4, and 9 signaling promotes autoregulative tumor cell growth and VEGF/PDGF expression in human pancreatic cancer. Int J Mol Sci. 2016;17:2060.

    Article  PubMed Central  CAS  Google Scholar 

  66. Lanki MA, Seppänen HE, Mustonen HK, Böckelman C, Juuti AT, Hagström JK, et al. Toll-like receptor 2 and Toll-like receptor 4 predict favorable prognosis in local pancreatic cancer. Tumour Biol. 2018;40:1010428318801188.

    Article  PubMed  CAS  Google Scholar 

  67. Schmidt J, Welsch T, Jäger D, Mühlradt PF, Büchler MW, Märten A. Intratumoural injection of the toll-like receptor-2/6 agonist ‘macrophage-activating lipopeptide-2’ in patients with pancreatic carcinoma: a phase I/II trial. Br J Cancer. 2007;97:598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seya T, Shime H, Takeda Y, Tatematsu M, Takashima K, Matsumoto M, et al. Adjuvant for vaccine immunotherapy of cancer–focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Sci. 2015;106:1659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 2019;10:2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, et al. High toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch. 2017;470:401–10.

    Article  PubMed  CAS  Google Scholar 

  71. Pramanik KC, Makena MR, Bhowmick K, Pandey MK. Advancement of NF-κB signaling pathway: a novel target in pancreatic cancer. Int J Mol Sci. 2018;19:3890.

    Article  PubMed Central  CAS  Google Scholar 

  72. Principe DR, Narbutis M, Kumar S, Park A, Viswakarma N, Dorman MJ, et al. Long-term gemcitabine treatment reshapes the pancreatic tumor microenvironment and sensitizes murine carcinoma to combination immunotherapy. Cancer Res. 2020;80:3101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grimmig T, Matthes N, Hoeland K, Tripathi S, Chandraker A, Grimm M, et al. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int J Oncol. 2015;47:857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen X, Cheng F, Liu Y, Zhang L, Song L, Cai X, et al. Toll-like receptor 2 and Toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1. EBioMedicine. 2019;40:135–50.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cebrián MJG, Bauden M, Andersson R, Holdenrieder S, Ansari D. Paradoxical role of HMGB1 in pancreatic cancer: tumor suppressor or tumor promoter? Anticancer Res. 2016;36:4381–9.

    Article  PubMed  CAS  Google Scholar 

  76. Geller L, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Disco. 2018;8:403–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Angela Vais (Monash Histology Platform, Melbourne, Australia) for immunohistochemistry and immunofluorescence expertise. We also thank Trevor Wilson and Jodee Gould from the MHTP Medical Genomics Facility (Melbourne, Australia) for providing technical expertise and assistance with the AmpliSeq transcriptomics studies, as well as Minoti Apte (University of New South Wales, Australia) for kindly providing human pancreatic stellate cells. We also thank the Australian Pancreatic Cancer Genome Initiative, supported by an Avner Pancreatic Cancer Foundation Grant, for the provision of biospecimens. This work was supported by research grants awarded by the Avner Pancreatic Cancer Foundation and CASS Foundation, as well as the Operational Infrastructure Support Program by the Victorian Government of Australia. BJJ is supported by an NHMRC Senior Medical Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BJJ. Development of methodology: JL, LJG, DC, BJJ. Human tissue acquisition: DC. Acquisition of data: JL, LJG, LY. Analysis and interpretation of data: JL, LJG, AW, LM, MP, DC, BJJ. Provision of reagents: SP, MP, PJH. Writing and/or revision of the manuscript: JL, LJG, BJJ. Study supervision: DC, BJJ.

Corresponding author

Correspondence to Brendan J. Jenkins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundy, J., Gearing, L.J., Gao, H. et al. TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma. Oncogene 40, 6007–6022 (2021). https://doi.org/10.1038/s41388-021-01992-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01992-2

This article is cited by

Search

Quick links