Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome

Abstract

Cells coordinate numerous biochemical reactions in space and time, depending on the subdivision of the intracellular space into functional compartments. Compelling evidence has demonstrated that phase separation induces the formation of membrane-less compartments to partition intracellular substances in a strictly regulated manner and participates in various biological processes. Based on the strong association of cancer with the dysregulation of intracellular physiological processes and the occurrence of phase separation in cancer-associated condensates, phase separation undoubtedly plays a significant role in tumorigenesis. In this review, we summarize the drivers and functions of phase separation, elaborate on the roles of phase separation in tumor pathogenesis and evolution, and propose substantial research and therapeutic prospects for phase separation in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase separation is a reversible and dynamic process.
Fig. 2: Phase separation is mediated by post-translational modifications (PTMs) and epigenetic alterations and participates in biological reactions.
Fig. 3: Potential strategies for cancer treatment via regulation of phase separation.

Similar content being viewed by others

References

  1. Zhang H, Ji X, Li P, Liu C, Lou J, Wang Z, et al. Liquid-liquid phase separation in biology: Mechanisms, physiological functions and human diseases. Sci China Life Sci. 2020;63:953–85.

    Article  PubMed  Google Scholar 

  2. Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39–58.

    Article  CAS  PubMed  Google Scholar 

  3. Bergeron-Sandoval LP, Safaee N, Michnick SW. Mechanisms and consequences of macromolecular phase separation. Cell. 2016;165:1067–79.

    CAS  PubMed  Google Scholar 

  4. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 2018;28:420–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hyman AA, Simons K. Cell biology. Beyond oil and water–phase transitions in cells. Science. 2012;337:1047–9.

    Article  CAS  PubMed  Google Scholar 

  6. Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, et al. Pi-pi contacts are an overlooked protein feature relevant to phase separation. Elife. 2018;7:e31486.

  7. Wheeler RJ, Hyman AA. Controlling compartmentalization by non-membrane-bound organelles. Philos Trans R Soc Lond B Biol Sci. 2018;373:20170193.

  8. Bienz M. Head-to-tail polymerization in the assembly of biomolecular condensates. Cell. 2020;182:799–811.

    Article  CAS  PubMed  Google Scholar 

  9. Shrinivas K, Sabari BR, Coffey EL, Klein IA, Boija A, Zamudio AV, et al. Enhancer features that drive formation of transcriptional condensates. Mol Cell. 2019;75:549–561.e547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol Cell. 2016;63:72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, et al. Germline p granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324:1729–32.

    Article  CAS  PubMed  Google Scholar 

  12. Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, et al. Phase separation of 53bp1 determines liquid-like behavior of DNA repair compartments. EMBO J. 2019;38:e101379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 2018;361:eaar3958.

  14. Zhang G, Wang Z, Du Z, Zhang H. Mtor regulates phase separation of pgl granules to modulate their autophagic degradation. Cell. 2018;174:1492–1506.e1422.

    Article  CAS  PubMed  Google Scholar 

  15. Du M, Chen ZJ. DNA-induced liquid phase condensation of cgas activates innate immune signaling. Science. 2018;361:704–9.

    Article  CAS  PubMed  Google Scholar 

  16. Seton-Rogers S. Spop mutations disrupt phase separation. Nat Rev Cancer. 2018;18:667.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu G, Xie J, Fu Z, Wang M, Zhang Q, He H, et al. Pharmacological inhibition of src-1 phase separation suppresses yap oncogenic transcription activity. Cell Res. 2021;31:1028–31.

  18. Li W, Hu J, Shi B, Palomba F, Digman MA, Gratton E, et al. Biophysical properties of akap95 protein condensates regulate splicing and tumorigenesis. Nat Cell Biol. 2020;22:960–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16:35–42.

    Article  CAS  PubMed  Google Scholar 

  20. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability_an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  CAS  PubMed  Google Scholar 

  21. Weber SC, Brangwynne CP. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr Biol. 2015;25:641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feric M, Brangwynne CP. A nuclear f-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat Cell Biol. 2013;15:1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol. 2017;27:322–39.

    Article  CAS  PubMed  Google Scholar 

  24. Pan J, Deng Q, Jiang C, Wang X, Niu T, Li H, et al. Usp37 directly deubiquitinates and stabilizes c-myc in lung cancer. Oncogene. 2015;34:3957–67.

    Article  CAS  PubMed  Google Scholar 

  25. Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR, et al. Phosphorylation-mediated activation of ldha promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382.

  27. Varadi M, Zsolyomi F, Guharoy M, Tompa P. Functional advantages of conserved intrinsic disorder in rna-binding proteins. PLoS One. 2015;10:e0139731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol. 2019;15:51–61.

    Article  CAS  PubMed  Google Scholar 

  29. Sun D, Wu R, Zheng J, Li P, Yu L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 2018;28:405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai WC, Gayatri S, Reineke LC, Sbardella G, Bedford MT, Lloyd RE. Arginine demethylation of g3bp1 promotes stress granule assembly. J Biol Chem. 2016;291:22671–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, et al. Phase separation of fus is suppressed by its nuclear import receptor and arginine methylation. Cell. 2018;173:706–719.e713.

    Article  CAS  PubMed  Google Scholar 

  32. Tsang B, Arsenault J, Vernon RM, Lin H, Sonenberg N, Wang LY, et al. Phosphoregulated fmrp phase separation models activity-dependent translation through bidirectional control of mrna granule formation. Proc Natl Acad Sci USA. 2019;116:4218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim TH, Tsang B, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD. Phospho-dependent phase separation of fmrp and caprin1 recapitulates regulation of translation and deadenylation. Science. 2019;365:825–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature. 2020;578:296–300.

    Article  CAS  PubMed  Google Scholar 

  35. Salomoni P, Pandolfi PP. The role of pml in tumor suppression. Cell. 2002;108:165–70.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP. Role of sumo-1-modified pml in nuclear body formation. Blood. 2000;95:2748–52.

    Article  CAS  PubMed  Google Scholar 

  37. Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of pml and the nuclear body. Nat Cell Biol. 2000;2:E85–90.

    Article  CAS  PubMed  Google Scholar 

  38. De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (alt). Int J Mol Sci. 2018;19:606.

  39. Potts PR, Yu H. The smc5/6 complex maintains telomere length in alt cancer cells through sumoylation of telomere-binding proteins. Nat Struct Mol Biol. 2007;14:581–90.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Zhao R, Tones J, Liu M, Dilley RL, Chenoweth DM, et al. Nuclear body phase separation drives telomere clustering in alt cancer cells. Mol Biol Cell. 2020;31:2048–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  42. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-hodgkin lymphoma. Nature. 2011;476:298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caslini C, Hong S, Ban YJ, Chen XS, Ince TA. Hdac7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene. 2019;38:6599–614.

    Article  CAS  PubMed  Google Scholar 

  45. Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, et al. Hp1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 2019;575:390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tatavosian R, Kent S, Brown K, Yao T, Duc HN, Huynh TN, et al. Nuclear condensates of the polycomb protein chromobox 2 (cbx2) assemble through phase separation. J Biol Chem. 2019;294:1451–63.

    Article  CAS  PubMed  Google Scholar 

  47. Plys AJ, Davis CP, Kim J, Rizki G, Keenen MM, Marr SK, et al. Phase separation of polycomb-repressive complex 1 is governed by a charged disordered region of cbx2. Genes Dev. 2019;33:799–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang L, Gao Y, Zheng X, Liu C, Dong S, Li R, et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell. 2019;76:646–659.e646.

    Article  CAS  PubMed  Google Scholar 

  49. Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, et al. Organization of chromatin by intrinsic and regulated phase separation. Cell. 2019;179:470–484.e421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, et al. M(6)a enhances the phase separation potential of mrna. Nature. 2019;571:424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu Y, Zhuang X. M(6)a-binding ythdf proteins promote stress granule formation. Nat Chem Biol. 2020;16:955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang J, Wang L, Diao J, Shi YG, Shi Y, Ma H, et al. Binding to m(6)a rna promotes ythdf2-mediated phase separation. Protein Cell. 2020;11:304–7.

    Article  PubMed  Google Scholar 

  53. Gao Y, Pei G, Li D, Li R, Shao Y, Zhang QC, et al. Multivalent m(6)a motifs promote phase separation of ythdf proteins. Cell Res. 2019;29:767–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, et al. Functional domains of neat1 architectural lncrna induce paraspeckle assembly through phase separation. Mol Cell. 2018;70:1038–1053.e1037.

    Article  CAS  PubMed  Google Scholar 

  55. Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, et al. Lncrna girgl drives caprin1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv. 2021;7:eabe5708.

  56. Jia W, Li H, Li S, Chen L, Li SC. Oviz-bio: A web-based platform for interactive cancer genomics data visualization. Nucleic Acids Res. 2020;48:W415–w426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gupta R, Janostiak R, Wajapeyee N. Transcriptional regulators and alterations that drive melanoma initiation and progression. Oncogene. 2020;39:7093–105.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26:7773–9.

    Article  CAS  PubMed  Google Scholar 

  59. O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.

    Article  PubMed  CAS  Google Scholar 

  60. Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, Mihanfar A, Karimian A, Majidinia M. 53bp1: A key player of DNA damage response with critical functions in cancer. DNA Repair. 2019;73:110–9.

    Article  CAS  PubMed  Google Scholar 

  61. Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grøfte M, et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(adp-ribose). Nat Commun. 2015;6:8088.

    Article  CAS  PubMed  Google Scholar 

  62. Mastrocola AS, Kim SH, Trinh AT, Rodenkirch LA, Tibbetts RS. The rna-binding protein fused in sarcoma (fus) functions downstream of poly(adp-ribose) polymerase (parp) in response to DNA damage. J Biol Chem. 2013;288:24731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oshidari R, Huang R, Medghalchi M, Tse EYW, Ashgriz N, Lee HO, et al. DNA repair by rad52 liquid droplets. Nat Commun. 2020;11:695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harlen KM, Churchman LS. The code and beyond: transcription regulation by the rna polymerase ii carboxy-terminal domain. Nat Rev Mol Cell Biol. 2017;18:263–73.

    Article  CAS  PubMed  Google Scholar 

  66. Zaborowska J, Egloff S, Murphy S. The pol ii ctd: new twists in the tail. Nat Struct Mol Biol. 2016;23:771–7.

    Article  CAS  PubMed  Google Scholar 

  67. Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, et al. Phosphorylation-regulated binding of rna polymerase ii to fibrous polymers of low-complexity domains. Cell. 2013;155:1049–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burke KA, Janke AM, Rhine CL, Fawzi NL. Residue-by-residue view of in vitro fus granules that bind the c-terminal domain of rna polymerase ii. Mol Cell. 2015;60:231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, et al. Phase-separation mechanism for c-terminal hyperphosphorylation of rna polymerase ii. Nature. 2018;558:318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’Agnese A, Hannett NM, et al. Pol ii phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572:543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011;144:327–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie W, Ren B. Developmental biology. Enhancing pluripotency and lineage specification. Science. 2013;341:245–7.

    Article  CAS  PubMed  Google Scholar 

  73. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  75. Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A phase separation model for transcriptional control. Cell. 2017;169:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cai D, Feliciano D, Dong P, Flores E, Gruebele M, Porat-Shliom N, et al. Phase separation of yap reorganizes genome topology for long-term yap target gene expression. Nat Cell Biol. 2019;21:1578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu Y, Wu T, Gutman O, Lu H, Zhou Q, Henis YI, et al. Phase separation of taz compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol. 2020;22:453–64.

    Article  CAS  PubMed  Google Scholar 

  78. Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018;175:1842–1855.e1816.

    Article  CAS  PubMed  Google Scholar 

  79. Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, Zheng MM, et al. Rna-mediated feedback control of transcriptional condensates. Cell. 2021;184:207–225.e224.

    Article  CAS  PubMed  Google Scholar 

  80. Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the evasion of degradation to ubiquitin-dependent protein stabilization. Cells. 2021;10:2374.

  81. Wangeline MA, Vashistha N, Hampton RY. Proteostatic tactics in the strategy of sterol regulation. Annu Rev Cell Dev Biol. 2017;33:467–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL, Banerjee PR, et al. Self-interaction of npm1 modulates multiple mechanisms of liquid-liquid phase separation. Nat Commun. 2018;9:842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, et al. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342–7.

    Article  CAS  PubMed  Google Scholar 

  84. Yamasaki A, Alam JM, Noshiro D, Hirata E, Fujioka Y, Suzuki K, et al. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol Cell. 2020;77:1163–1175.e1169.

    Article  CAS  PubMed  Google Scholar 

  85. Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T, Okada Y, et al. Phase separation organizes the site of autophagosome formation. Nature. 2020;578:301–5.

    Article  CAS  PubMed  Google Scholar 

  86. Chen D, Wang Z, Zhao YG, Zheng H, Zhao H, Liu N, et al. Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of tfeb to negatively regulate autophagy activity. Dev Cell. 2020;55:588–602.e587.

    Article  CAS  PubMed  Google Scholar 

  87. Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol. 2005;23:5386–403.

    Article  CAS  PubMed  Google Scholar 

  88. Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, et al. Phase separation of signaling molecules promotes t cell receptor signal transduction. Science. 2016;352:595–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Case LB, Zhang X, Ditlev JA, Rosen MK. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science. 2019;363:1093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. Cgas produces a 2’-5’-linked cyclic dinucleotide second messenger that activates sting. Nature. 2013;498:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. Cyclic [g(2’,5’)pa(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic gmp-amp synthase. Cell. 2013;153:1094–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xia S, Chen Z, Shen C, Fu TM. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein Cell. 2021;12:680–94.

  93. Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. Cgas phase separation inhibits trex1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell. 2021;81:739–755.e737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ryan JJ, Sprunger ML, Holthaus K, Shorter J, Jackrel ME. Engineered protein disaggregases mitigate toxicity of aberrant prion-like fusion proteins underlying sarcoma. J Biol Chem. 2019;294:11286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, et al. Phase separation of disease-associated shp2 mutants underlies mapk hyperactivation. Cell. 2020;183:490–502.e418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, et al. Yb-1 regulates stress granule formation and tumor progression by translationally activating g3bp1. J Cell Biol. 2015;208:913–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chang HR, Munkhjargal A, Kim MJ, Park SY, Jung E, Ryu JH, et al. The functional roles of pml nuclear bodies in genome maintenance. Mutat Res. 2018;809:99–107.

    Article  CAS  PubMed  Google Scholar 

  98. de Thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32:552–60.

    Article  PubMed  CAS  Google Scholar 

  99. Shima Y, Shima T, Chiba T, Irimura T, Pandolfi PP, Kitabayashi I. Pml activates transcription by protecting hipk2 and p300 from scffbx3-mediated degradation. Mol Cell Biol. 2008;28:7126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. di Masi A, Cilli D, Berardinelli F, Talarico A, Pallavicini I, Pennisi R, et al. Pml nuclear body disruption impairs DNA double-strand break sensing and repair in apl. Cell Death Dis. 2016;7:e2308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R, Naigles B, et al. Cancer-specific retargeting of baf complexes by a prion-like domain. Cell. 2017;171:163–178.e119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci. 2013;38:494–506.

    Article  CAS  PubMed  Google Scholar 

  103. Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G, Chao JA. Single-molecule imaging reveals translation of mrnas localized to stress granules. Cell. 2020;183:1801–1812.e1813.

    Article  CAS  PubMed  Google Scholar 

  104. Gan W, Dai X, Lunardi A, Li Z, Inuzuka H, Liu P, et al. Spop promotes ubiquitination and degradation of the erg oncoprotein to suppress prostate cancer progression. Mol Cell. 2015;59:917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, et al. Spop mutation leads to genomic instability in prostate cancer. Elife. 2015;4:e09207.

  106. Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of spop protein in tumorigenesis and cancer therapy. Mol Cancer. 2020;19:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, et al. Cancer mutations of the tumor suppressor spop disrupt the formation of active, phase-separated compartments. Mol Cell. 2018;72:19–36.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, et al. Btb domain-containing speckle-type poz protein (spop) serves as an adaptor of daxx for ubiquitination by cul3-based ubiquitin ligase. J Biol Chem. 2006;281:12664–72.

    Article  CAS  PubMed  Google Scholar 

  109. Yu M, Peng Z, Qin M, Liu Y, Wang J, Zhang C, et al. Interferon-γ induces tumor resistance to anti-pd-1 immunotherapy by promoting yap phase separation. Mol Cell. 2021;81:1216–1230.e1219.

    Article  CAS  PubMed  Google Scholar 

  110. Jiang H, Lu X, Shimada M, Dou Y, Tang Z, Roeder RG. Regulation of transcription by the mll2 complex and mll complex-associated akap95. Nat Struct Mol Biol. 2013;20:1156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hu J, Khodadadi-Jamayran A, Mao M, Shah K, Yang Z, Nasim MT, et al. Akap95 regulates splicing through scaffolding rnas and rna processing factors. Nat Commun. 2016;7:13347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Klein IA, Boija A, Afeyan LK, Hawken SW, Fan M, Dall’Agnese A, et al. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368:1386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carabet LA, Rennie PS, Cherkasov A. Therapeutic inhibition of myc in cancer. Structural bases and computer-aided drug discovery approaches. Int J Mol Sci. 2018;20:120.

  114. Iconaru LI, Ban D, Bharatham K, Ramanathan A, Zhang W, Shelat AA, et al. Discovery of small molecules that inhibit the disordered protein, p27(kip1). Sci Rep. 2015;5:15686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu H, Fuxreiter M. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell. 2016;165:1055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Boija A, Klein IA, Young RA. Biomolecular condensates and cancer. Cancer Cell. 2021;39:174–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Plan (2017YFE0196300), the National Natural Science Foundation of China (81772875, 81972530, 82073889 and U1932135), Science and Technology Commission of Shanghai Municipality (SHDC2020CR1009A, 20DZ2270800 and 19JC1410200), Fund for Excellent Young Scholars of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (JYYQ001).

Author information

Authors and Affiliations

Authors

Contributions

JR, RJ, and PC provided direction and guidance throughout the preparation of this manuscript. XG collected and interpreted studies and was a major contributor to the writing and editing of the manuscript. PC and AZ reviewed and made significant revisions to the manuscript. JY assisted in the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peiwei Chai, Renbing Jia or Jing Ruan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Zhuang, A., Yu, J. et al. Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene 41, 1527–1535 (2022). https://doi.org/10.1038/s41388-022-02195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02195-z

Search

Quick links