Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth

Abstract

The complement system is a major component of the innate immune system that works through the cytolytic effect of the membrane attack complex (MAC). Complement component 7 (C7) is essential for MAC assembly and its precisely regulated expression level is crucial for the cytolytic activity of MAC. We show that C7 is specifically expressed by the stromal cells in both mouse and human prostates. The expression level of C7 inversely correlates with clinical outcomes in prostate cancer. C7 is positively regulated by androgen signaling in the mouse prostate stromal cells. The androgen receptor directly transcriptionally regulates the mouse and human C7. Increasing C7 expression in the C57Bl/6 syngeneic RM-1 and Pten-Kras allografts suppresses tumor growth in vivo. Conversely, C7 haploinsufficiency promotes tumor growth in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Interestingly, replenishing C7 in androgen-sensitive Pten-Kras tumors during androgen depletion only slightly enhances cellular apoptosis, highlighting the diverse mechanisms employed by tumors to counteract complement activity. Collectively, our research indicates that augmenting complement activity could be a promising therapeutic approach to impede the development of castration resistance in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C7 is expressed by stromal cells in mouse and human prostates.
Fig. 2: Stromal C7 expression inversely correlates with prostate cancer progression.
Fig. 3: C7 is regulated by androgen receptor signaling.
Fig. 4: C7 suppresses prostate tumor growth in vivo.
Fig. 5: C7 haploinsufficiency promotes tumor growth in TRAMP model.
Fig. 6: Restoring C7 expression enhances the response of Pten-Kras to androgen deprivation.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016;12:383–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Revel M, Daugan MV, Sautes-Fridman C, Fridman WH, Roumenina LT. Complement system: promoter or suppressor of cancer progression? Antibodies. 2020;9:57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Parsa AT. Cancer and the complement cascade. Mol Cancer Res 2010;8:1453–65.

    Article  CAS  PubMed  Google Scholar 

  5. Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immun. 2018;18:5–18.

    Article  CAS  Google Scholar 

  6. Loberg RD, Day LL, Dunn R, Kalikin LM, Pienta KJ. Inhibition of decay-accelerating factor (CD55) attenuates prostate cancer growth and survival in vivo. Neoplasia. 2006;8:69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu C, Jung M, Burkhardt M, Stephan C, Schnorr D, Loening S, et al. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate. 2005;62:224–32.

    Article  CAS  PubMed  Google Scholar 

  8. July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave ME. Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate. 2002;50:179–88.

    Article  CAS  PubMed  Google Scholar 

  9. Tschopp J, Chonn A, Hertig S, French LE. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol. 1993;151:2159–65.

    Article  CAS  PubMed  Google Scholar 

  10. Emin M, Wang G, Castagna F, Rodriguez-Lopez J, Wahab R, Wang J, et al. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci Transl Med. 2016;8:320ra1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wurzner R. Modulation of complement membrane attack by local C7 synthesis. Clin Exp Immun. 2000;121:8–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wurzner R, Joysey VC, Lachmann PJ. Complement component C7. Assessment of in vivo synthesis after liver transplantation reveals that hepatocytes do not synthesize the majority of human C7. J Immunol. 1994;152:4624–9.

    Article  CAS  PubMed  Google Scholar 

  13. Fosbrink M, Niculescu F, Rus H. The role of c5b-9 terminal complement complex in activation of the cell cycle and transcription. Immun Res. 2005;31:37–46.

    Article  CAS  Google Scholar 

  14. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci. 2013;126:2903–13.

    CAS  PubMed  Google Scholar 

  15. Bossi F, Rizzi L, Bulla R, Debeus A, Tripodo C, Picotti P, et al. C7 is expressed on endothelial cells as a trap for the assembling terminal complement complex and may exert anti-inflammatory function. Blood. 2009;113:3640–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Hu W, Xie Y, Wu H, Jia Z, Zhang Z, et al. Functional genetic variants in complement component 7 confer susceptibility to gastric cancer. PeerJ. 2022;10:e12816.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ying L, Zhang F, Pan X, Chen K, Zhang N, Jin J, et al. Complement component 7 (C7), a potential tumor suppressor, is correlated with tumor progression and prognosis. Oncotarget. 2016;7:86536–46.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tyekucheva S, Bowden M, Bango C, Giunchi F, Huang Y, Zhou C, et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat Commun. 2017;8:420.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kwon OJ, Zhang Y, Li Y, Wei X, Zhang L, Chen R, et al. Functional heterogeneity of mouse prostate stromal cells revealed by single-cell RNA-Seq. iScience. 2019;13:328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joseph DB, Henry GH, Malewska A, Reese JC, Mauck RJ, Gahan JC, et al. Single-cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. J Pathol. 2021;255:141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei X, Roudier MP, Kwon OJ, Lee JD, Kong K, Dumpit R, et al. Paracrine Wnt signaling is necessary for prostate epithelial proliferation. Prostate. 2022;82:517–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, et al. Spatially restricted stromal wnt signaling restrains prostate epithelial progenitor growth through direct and indirect mechanisms. Cell Stem Cell. 2019;24:753–68.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jia D, Zhou Z, Kwon OJ, Zhang L, Wei X, Zhang Y, et al. Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity. Nat Commun. 2022;13:6828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei X, Zhang L, Zhang Y, Cooper C, Brewer C, Tsai CF, et al. Ablating Lgr5-expressing prostatic stromal cells activates the ERK-mediated mechanosensory signaling and disrupts prostate tissue homeostasis. Cell Rep. 2022;40:111313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sboner A, Demichelis F, Calza S, Pawitan Y, Setlur SR, Hoshida Y, et al. Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC Med Genomics. 2010;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maund SL, Nolley R, Peehl DM. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate. Lab Investig. 2014;94:208–21.

    Article  CAS  PubMed  Google Scholar 

  28. Berman-Booty LD, Sargeant AM, Rosol TJ, Rengel RC, Clinton SK, Chen CS, et al. A review of the existing grading schemes and a proposal for a modified grading scheme for prostatic lesions in TRAMP mice. Toxicol Pathol. 2012;40:5–17.

    Article  PubMed  Google Scholar 

  29. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res. 2019;25:6916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonzalez S, Martinez-Borra J, Lopez-Larrea C. Cloning and characterization of human complement component C7 promoter. Genes Immun. 2003;4:54–9.

    Article  CAS  PubMed  Google Scholar 

  31. Erbersdobler A, Augustin H, Schlomm T, Henke RP. Prostate cancers in the transition zone: Part 1; pathological aspects. BJU Int. 2004;94:1221–5.

    Article  PubMed  Google Scholar 

  32. Krieger JN, Ross SO, Riley DE. Chronic prostatitis: epidemiology and role of infection. Urology. 2002;60:8–12.

    Article  PubMed  Google Scholar 

  33. Nash C, Boufaied N, Badescu D, Wang YC, Paliouras M, Trifiro M, et al. Genome-wide analysis of androgen receptor binding and transcriptomic analysis in mesenchymal subsets during prostate development. Dis Models Mech. 2019;12:dmm039297.

    Article  Google Scholar 

  34. Zhang J, Gonit M, Salazar MD, Shatnawi A, Shemshedini L, Trumbly R, et al. C/EBPalpha redirects androgen receptor signaling through a unique bimodal interaction. Oncogene. 2010;29:723–38.

    Article  CAS  PubMed  Google Scholar 

  35. Leach DA, Panagopoulos V, Nash C, Bevan C, Thomson AA, Selth LA, et al. Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Mol Cell Endocrinol. 2017;439:261–72.

    Article  CAS  PubMed  Google Scholar 

  36. Kwon OJ, Zhang B, Jia D, Zhang L, Wei X, Zhou Z, et al. Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130. Oncogene. 2022;41:1309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA. 2004;101:1327–32.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Valdez JM, Zhang L, Su Q, Dakhova O, Zhang Y, Shahi P, et al. Notch and TGFbeta form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. Cell Stem Ccell. 2012;11:676–88.

    Article  CAS  Google Scholar 

  39. Kwon OJ, Zhang L, Jia D, Zhou Z, Li Z, Haffner M, et al. De novo induction of lineage plasticity from human prostate luminal epithelial cells by activated AKT1 and c-Myc. Oncogene. 2020;39:7142–51.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci USA. 2006;103:7789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi N, Zhang B, Zhang L, Ittmann M, Xin L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell. 2012;21:253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for supporting this research, Brenda Nghiem and Lori Kollath for sample identification and processing, and Dr. Xiaomu Zhang for maintaining the C7 mice. This work is supported by W81XWH-20-1-0218 (L.X.), R01CA190378 (L.X.), the Pritt Family Endowment, P50CA97186, P01CA163227, and the Institute for Prostate Cancer Research (IPCR).

Funding

DoD, NCI.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LX and ZZ; Investigation, ZZ, DJ, OK, SL, HS, and MR; Formal analysis: ZZ, MR, CJC, and LX; Writing, LX, CJC, and ZZ; Resources, DL, LT, and CM; Funding Acquisition, LX and JKL; Supervision, LX and JKL.

Corresponding author

Correspondence to Li Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Jia, D., Kwon, O. et al. Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth. Oncogene 42, 2428–2438 (2023). https://doi.org/10.1038/s41388-023-02759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02759-7

This article is cited by

Search

Quick links