Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical Research
  • Published:

MSH2-deficient prostate tumours have a distinct immune response and clinical outcome compared to MSH2-deficient colorectal or endometrial cancer

Abstract

Background

Recent publications have shown patients with defects in the DNA mismatch repair (MMR) pathway driven by either MSH2 or MSH6 loss experience a significant increase in the incidence of prostate cancer. Moreover, this increased incidence of prostate cancer is accompanied by rapid disease progression and poor clinical outcomes.

Methods and results

We show that androgen-receptor activation, a key driver of prostate carcinogenesis, can disrupt the MSH2 gene in prostate cancer. We screened tumours from two cohorts (recurrent/non-recurrent) of prostate cancer patients to confirm the loss of MSH2 protein expression and identified decreased MSH2 expression in recurrent cases. Stratifying the independent TCGA prostate cancer cohort for MSH2/6 expression revealed that patients with lower levels of MSH2/6 had significant worse outcomes, in contrast, endometrial and colorectal cancer patients with lower MSH2/6 levels. MMRd endometrial and colorectal tumours showed the expected increase in mutational burden, microsatellite instability and enhanced immune cell mobilisation but this was not evident in prostate tumours.

Conclusions

We have shown that loss or reduced levels of MSH2/MSH6 protein in prostate cancer is associated with poor outcome. However, our data indicate that this is not associated with a statistically significant increase in mutational burden, microsatellite instability or immune cell mobilisation in a cohort of primary prostate cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant MSH2 expression is associated with poor clinical outcomes.
Fig. 2: Investigation of MSH2/6 status on outcomes across cancer types.
Fig. 3: Structural variations disrupt MSH2 function in prostate cancer.
Fig. 4: MSH2-deficient prostate tumours have no change in immune cell mobilisation.
Fig. 5: In silico analysis of independent TCGA prostate tumour cohorts stratified by MMR status reveals no change in immune cell levels whilst endometrial and colorectal cancers exhibit marked changes.
Fig. 6: MMR and microsatellite stability signatures in prostate, colorectal and endometrial cancer patients with high, low or normal MSH2 and MSH6 protein in the TCGA cohort.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  3. Shen MM. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell. 2013:23;567–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153:666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raymond VM, Mukherjee B, Wang F, Huang S-C, Stoffel EM, Kastrinos F, et al. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol. 2013;31:1713–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder E, Dietmaier W, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012;30:4409–15.

    Article  PubMed  Google Scholar 

  7. Barrow PJ, Ingham S, O’Hara C, Green K, McIntyre I, Lalloo F, et al. The spectrum of urological malignancy in Lynch syndrome. Fam Cancer. 2013;12:57–63.

    Article  CAS  PubMed  Google Scholar 

  8. Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42:668–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin C, Yang L, Tanasa B, Hutt K, Ju B-G, Ohgi K, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139:1069–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mani R-S, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326:1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun X-W, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  CAS  PubMed  Google Scholar 

  12. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol. 2011;29:3659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Javid M, Sasanakietkul T, Nicolson NG, Gibson CE, Callender GG, Korah R, et al. DNA mismatch repair deficiency promotes genomic instability in a subset of papillary thyroid cancers. World J Surg. 2018;42:358–66.

    Article  PubMed  Google Scholar 

  14. Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81:214–8.

    Article  CAS  PubMed  Google Scholar 

  15. Dinh TA, Rosner BI, Atwood JC, Boland CR, Syngal S, Vasen HFA, et al. Health benefits and cost-effectiveness of primary genetic screening for Lynch syndrome in the general population. Cancer Prev Res. 2011;4:9–22.

    Article  Google Scholar 

  16. Stoffel E, Mukherjee B, Raymond VM, Tayob N, Kastrinos F, Sparr J, et al. Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology. 2009;137:1621–7.

    Article  PubMed  Google Scholar 

  17. Watson P, Riley B. The tumor spectrum in the Lynch syndrome. Fam Cancer. 2005;4:245–8.

    Article  PubMed  Google Scholar 

  18. Hong MKH, Macintyre G, Wedge DC, Van Loo P, Patel K, Lunke S, et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun. 2015;6:6605.

    Article  CAS  PubMed  Google Scholar 

  19. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 2008;14:3254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodrigues D, et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J Clin Investig. 2018;128:4441–53.

    Article  Google Scholar 

  21. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. J Stat Softw. 2017;76. https://www.osti.gov/biblio/1430202.

  22. Hall G, Clarkson A, Shi A, Langford E, Leung H, Eckstein RP, et al. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma. Pathology. 2010;42:409–13.

    Article  PubMed  Google Scholar 

  23. Shia J, Tang LH, Vakiani E, Guillem JG, Stadler ZK, Soslow RA, et al. Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: a 2-antibody panel may be as predictive as a 4-antibody panel. Am J Surg Pathol. 2009;33:1639.

    Article  PubMed  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:l1.

    Article  Google Scholar 

  25. Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 2013;23:762–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chng KR, Chang CW, Tan SK, Yang C, Hong SZ, Sng NYW, et al. A transcriptional repressor co‐regulatory network governing androgen response in prostate cancers. EMBO J. 2012;31:2810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ni M, Chen Y, Fei T, Li D, Lim E, Liu XS, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20:119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S, et al. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res. 2013;73:1570–80.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23:35–47.

    Article  CAS  PubMed  Google Scholar 

  31. Tan PY, Chang CW, Chng KR, Wansa KDS, Sung W-K, Cheung E. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol.2012;32:399–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Romigh T, He X, Tan M-H, Orloff MS, Silverman RH, et al. Differential regulation of PTEN expression by androgen receptor in prostate and breast cancers. Oncogene. 2011;30:4327–38.

    Article  CAS  PubMed  Google Scholar 

  33. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh C-H, et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell. 2013;153:919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu J, Yu J, Mani R-S, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17:443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  36. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  38. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. The immune landscape of cancer. Immunity. 2018;48:812–30.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guedes LB, Antonarakis ES, Schweizer MT, Mirkheshti N, Almutairi F, Park JC, et al. MSH2 loss in primary prostate cancer. Clin Cancer Res. 2017;23:6863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng HH, Pritchard CC, Montgomery B, Lin DW, Nelson PS. Prostate cancer screening in a new era of genetics. Clin Genitourin Cancer. 2017;15:625–8.

    Article  PubMed  Google Scholar 

  41. Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun. 2014;5:4988.

    Article  CAS  PubMed  Google Scholar 

  42. Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S. et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS ONE. 2015;10:e0125560

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.

    Article  CAS  PubMed  Google Scholar 

  44. Gezer U, Tiryakioglu D, Bilgin E, Dalay N, Holdenrieder S. Androgen stimulation of PCA3 and miR-141 and their release from prostate cancer cells. Cell J. 2015;16:488–93.

    PubMed  PubMed Central  Google Scholar 

  45. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, et al. miR-21: an androgen receptor–regulated MicroRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69:7165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z, et al. The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene. 2013;32:1497–507.

    Article  CAS  PubMed  Google Scholar 

  47. Deng J, Lei W, Fu J-C, Zhang L, Li J-H, Xiong J-P. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun. 2014;443:789–95.

    Article  CAS  PubMed  Google Scholar 

  48. Song Y, Zuo Y, Qian X-L, Chen Z-P, Wang S-K, Song L, et al. Inhibition of MicroRNA-21-5p promotes the radiation sensitivity of non-small cell lung cancer through HMSH2. Cell Physiol Biochem. 2017;43:1258–72.

    Article  CAS  PubMed  Google Scholar 

  49. Yu Y, Wang Y, Ren X, Tsuyada A, Li A, Liu LJ, et al. Context-dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor β contributes to chemoresistance in breast cancer cells. Mol Cancer Res. 2010;8:1633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scarpa M, Ruffolo C, Canal F, Scarpa M, Basato S, Erroi F, et al. Mismatch repair gene defects in sporadic colorectal cancer enhance immune surveillance. Oncotarget. 2015;6:43472–82.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Linnemann C, van Buuren MM, Bies L, Verdegaal EME, Schotte R, Calis JJA, et al. Corrigendum: High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2016;22:1192.

    Article  CAS  PubMed  Google Scholar 

  52. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  53. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJM, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35:40–7.

    Article  CAS  PubMed  Google Scholar 

  55. Cordes LM, Gulley JL, Madan RA. Perspectives on the clinical development of immunotherapy in prostate cancer. Asian J Androl. 2018;20:253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pasero C, Gravis G, Guerin M, Granjeaud S, Thomassin-Piana J, Rocchi P, et al. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 2016;76:2153–65.

    Article  CAS  PubMed  Google Scholar 

  57. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 2010;10:554–67.

    Article  CAS  PubMed  Google Scholar 

  58. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellström M, Egevad L, et al. CD4+ CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KC is supported by a Postgraduate Medical Research Scholarship from the Prostate Cancer Research Fund, Foundations for Surgery Research Scholarship from the Royal Australasian College of Surgeons, and the Research Training Program Scholarship from the Australian Commonwealth Government. NMC is supported by a Movember – Distinguished Gentleman’s Ride Clinician Scientist Award through Prostate Cancer Foundation of Australia’s Research Program. MK was supported by the Carlo Vaccari Scholarship and APCR. SM was supported by the David Mayor PhD. Scholarship from the Prostate Cancer Research Foundation, and by the Pamela Galli Single Cell & Computational Genomics Initiative. NK was supported by a PhD scholarship from Australian Prostate Cancer Research. PM was supported by a PhD scholarship from Australian Department of Health and Ageing to the Epworth Cancer Centre, Epworth Hospital. PG is supported by an Australian Government Research Training Program Scholarship. BP is supported by a Victorian Health and Medical Research Fellowship. This work was supported by NHMRC project grants 1104010 (CMH, AJC, NMC) and 1047581 (CMH, AJC, NMC), as well as a federal grant from the Australian Department of Health and Ageing to the Epworth Cancer Centre, Epworth Hospital (AJC, NMC, CMH). In carrying out this research, we received funding and support from Australian Prostate Cancer Research and the University of Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, GM, IH, PM, CMH; Methodology, GM, PM, CMH; Investigation, GM, PM, SM, NK, MK, KC, RH, MKHH, MJC, MC, BP, PG; Validation, RS, AR; Writing Original Draft, PM, CMH; Writing—Review & Editing, PM, SM, NMC, CMH; Funding Acquisition, AJC; Resources, MK, AJC; Supervision, NMC, CMH.

Corresponding author

Correspondence to Patrick McCoy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy, P., Mangiola, S., Macintyre, G. et al. MSH2-deficient prostate tumours have a distinct immune response and clinical outcome compared to MSH2-deficient colorectal or endometrial cancer. Prostate Cancer Prostatic Dis 24, 1167–1180 (2021). https://doi.org/10.1038/s41391-021-00379-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-021-00379-4

This article is cited by

Search

Quick links