Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell lung cancer patients

Abstract

Chemotherapy based on platinum compounds is the standard treatment for NSCLC patients with EGFR wild type, and is also used as second line in mutated EGFR patients. Nevertheless, this therapy presents poor clinical outcomes. ERCC1, ERCC2, XRCC1, MDM2, MTHFR, MTR, and SLC19A1 gene polymorphisms may contribute to individual variation in response and survival to platinum-based chemotherapy. The aim of this study was to investigate the influence of these polymorphisms on response and survival of NSCLC patients treated with platinum-based chemotherapy. A retrospective–prospective cohorts study was conducted, including 141 NSCLC patients. Polymorphisms were analyzed by PCR real-time with Taqman® probes. Patients with ERCC1 rs3212986-GG (p = 0.0268; OR = 2.50; CI95% = 1.12–5.69) and XRCC1 rs25487-GG (p = 0.0161; OR = 2.99; CI95% = 1.26–7.62) genotype showed significantly better ORR. Cox survival analysis revealed that patients carrying the MDM2 rs1690924-GG genotype (p = 0.0345; HR = 1.99; CI95% = 1.05–3.80) presented higher risk of death. Furthermore, carriers of MTR rs1805087-A alleles (p = 0.0060; HR = 8.91; CI95% = 1.87–42.42) and SLC19A1 rs1051266-AA genotype (p = 0.0130; HR = 1.74; CI95% = 1.12–2.68) showed greater risk of progression. No influence of ERCC1 rs11615, ERCC2 rs13181, ERCC2 rs1799793, XRCC1 rs1799782, MDM2 rs1470383, MTHFR rs1801131, and MTHFR rs1801133 on platinum-based chemotherapy clinical outcomes was found. In conclusion, our results suggest that ERCC1 rs3212986, XRCC1 rs25487, MDM2 rs1690924, MTR rs1805087, and SLC19A1 rs1051266 gene polymorphisms may significantly act as predictive factors in NSCLC patients treated with platinum-based chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC Cancer Staging Manual, 7th edn, Springer-Verlag New York, Inc.: New York, NY, USA, 2010.

  3. Herbst RS HJ, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.

    PubMed  Google Scholar 

  4. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    PubMed  Google Scholar 

  5. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. NCCN guidelines insights: non-small cell lung cancer, version 4.2016. J Natl Compr Cancer Netw. 2016;14:255–64.

    Google Scholar 

  6. Brule SY, Al-Baimani K, Jonker H, Zhang T, Nicholas G, Goss G, et al. Palliative systemic therapy for advanced non-small cell lung cancer: Investigating disparities between patients who are treated versus those who are not. Lung Cancer. 2016;97:15–21.

    PubMed  Google Scholar 

  7. Zhong C, Liu H, Jiang L, Zhang W, Yao F. Chemotherapy plus best supportive care versus best supportive care in patients with non-small cell lung cancer: a meta-analysis of randomized controlled trials. PLoS ONE. 2013;8:e58466.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Blumenthal GM, Karuri SW, Zhang H, Zhang L, Khozin S, Kazandjian D, et al. Overall response rate, progression-free survival, and overall survival with targeted and standard therapies in advanced non-small-cell lung cancer: US Food and Drug Administration trial-level and patient-level analyses. J Clin Oncol. 2015;33:1008–14.

    PubMed  PubMed Central  Google Scholar 

  9. Cardenal F, Lopez-Cabrerizo MP, Anton A, Alberola V, Massuti B, Carrato A, et al. Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 1999;17:12–18.

    CAS  PubMed  Google Scholar 

  10. Choi MK, Hong JY, Chang W, Kim M, Kim S, Jung HA, et al. Safety and efficacy of gemcitabine or pemetrexed in combination with a platinum in patients with non-small-cell lung cancer and prior interstitial lung disease. Cancer Chemother Pharmacol. 2014;73:1217–25.

    CAS  PubMed  Google Scholar 

  11. Crino L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):103–115.

    Google Scholar 

  12. Fenchel K, Sellmann L, Dempke WC. Overall survival in non-small cell lung cancer-what is clinically meaningful? Transl Lung Cancer Res. 2016;5:115–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gervais R, Robinet G, Clement-Duchene C, Denis F, El Kouri C, Martin P, et al. Pemetrexed and carboplatin, an active option in first-line treatment of elderly patients with advanced non-small cell lung cancer (NSCLC): a phase II trial. Lung Cancer. 2013;80:185–90.

    PubMed  Google Scholar 

  14. Hasegawa Y, Miura D, Kitamura C, Suzuki T, Kobayashi K, Sato N. A randomized phase II trial of gemcitabine plus carboplatin: biweekly versus standard schedules in patients with advanced non-small cell lung cancer. Chemotherapy. 2013;59:346–53.

    CAS  PubMed  Google Scholar 

  15. Ichiki M, Kawasaki M, Takayama K, Ninomiya K, Kuba M, Iwami F, et al. A multicenter phase II study of carboplatin and paclitaxel with a biweekly schedule in patients with advanced non-small-cell lung cancer: Kyushu thoracic oncology group trial. Cancer Chemother Pharmacol. 2006;58:368–73.

    CAS  PubMed  Google Scholar 

  16. Karampeazis A, Vamvakas L, Kentepozidis N, Polyzos A, Chandrinos V, Rigas G, et al. Biweekly carboplatin plus gemcitabine as first-line treatment of elderly patients with advanced squamous non-small-cell lung cancer: a multicenter phase I-II trial by the Hellenic Oncology Research Group. Clin Lung Cancer. 2016;17:543–9.

    CAS  PubMed  Google Scholar 

  17. Kim HJ, Kim TG, Lee HJ, Kim JH, Lim BH, Seo JW, et al. A phase II study of combination chemotherapy with docetaxel and carboplatin for elderly patients with advanced non-small cell lung cancer. Lung Cancer. 2010;68:248–52.

    PubMed  Google Scholar 

  18. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    CAS  PubMed  Google Scholar 

  19. Schuette WH, Groschel A, Sebastian M, Andreas S, Muller T, Schneller F, et al. A randomized phase II study of pemetrexed in combination with cisplatin or carboplatin as first-line therapy for patients with locally advanced or metastatic non-small-cell lung cancer. Clin Lung Cancer. 2013;14:215–23.

    CAS  PubMed  Google Scholar 

  20. Soejima K, Naoki K, Ishioka K, Nakamura M, Nakatani M, Kawada I, et al. A phase II study of biweekly paclitaxel and carboplatin in elderly patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2015;75:513–9.

    CAS  PubMed  Google Scholar 

  21. Takatani H, Nakamura Y, Nagashima S, Soda H, Kinoshita A, Fukuda M, et al. Phase I and II trials of vinorelbine with carboplatin for patients 75 years of age or older with previously untreated non-small-cell lung cancer. Clin Lung Cancer. 2012;13:347–51.

    CAS  PubMed  Google Scholar 

  22. Belani CP, Einzig A, Bonomi P, Dobbs T, Capozzoli MJ, Earhart R, et al. Multicenter phase II trial of docetaxel and carboplatin in patients with stage IIIB and IV non-small-cell lung cancer. Ann Oncol. 2000;11:673–8.

    CAS  PubMed  Google Scholar 

  23. Ozkaya S, Findik S, Atici AG, Dirica A. Cisplatin-based chemotherapy in elderly patients with advanced stage (IIIB and IV) non-small cell lung cancer patients. Neoplasma. 2011;58:348–51.

    CAS  PubMed  Google Scholar 

  24. Ozkaya S, Findik S, Dirican A, Atici AG. Long-term survival rates of patients with stage IIIB and IV non-small cell lung cancer treated with cisplatin plus vinorelbine or gemcitabine. Exp Ther Med. 2012;4:1035–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31:1039–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei HB, Lu XS, Shang LH, Xu G, Hu J, Che DH, et al. Polymorphisms of ERCC1 C118T/C8092A and MDR1 C3435T predict outcome of platinum-based chemotherapies in advanced non-small cell lung cancer: a meta-analysis. Arch Med Res. 2011;42:412–20.

    CAS  PubMed  Google Scholar 

  27. Wei SZ, Zhan P, Shi MQ, Shi Y, Qian Q, Yu LK, et al. Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: a systematic review and meta-analysis. Med Oncol. 2011;28:315–21.

    CAS  PubMed  Google Scholar 

  28. Yang Y, Xian L. The association between the ERCC1/2 polymorphisms and the clinical outcomes of the platinum-based chemotherapy in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis. Tumour Biol. 2014;35:2905–21.

    CAS  PubMed  Google Scholar 

  29. Huang SJ, Wang YF, Jin ZY, Sun JY, Guo ZL. Role of ERCC1 variants in response to chemotherapy and clinical outcome of advanced non-small cell lung cancer. Tumour Biol. 2014;35:4023–9.

    CAS  PubMed  Google Scholar 

  30. Li L, Wan C, Wen FQ. Polymorphisms in the XRCC1 gene are associated with treatment response to platinum chemotherapy in advanced non-small cell lung cancer patients based on meta-analysis. Genet Mol Res. 2014;13:3772–86.

    CAS  PubMed  Google Scholar 

  31. Shen XY, Lu FZ, Wu Y, Zhao LT, Lin ZF. XRCC3 Thr241Met polymorphism and clinical outcomes of NSCLC patients receiving platinum-based chemotherapy: a systematic review and meta-analysis. PLoS ONE. 2013;8:e69553.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiraishi K, Kohno T, Tanai C, Goto Y, Kuchiba A, Yamamoto S, et al. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2010;28:4945–52.

    CAS  PubMed  Google Scholar 

  33. Qian J, Liu H, Gu S, Wu Q, Zhao X, Wu W, et al. Genetic variants of the MDM2 gene are predictive of treatment-related toxicities and overall survival in patients with advanced NSCLC. Clin Lung Cancer. 2015;16:e37–53.

    CAS  PubMed  Google Scholar 

  34. Zhu N, Gong Y, He J, Xia J, Chen X. Influence of methylenetetrahydrofolate reductase C677T polymorphism on the risk of lung cancer and the clinical response to platinum-based chemotherapy for advanced non-small cell lung cancer: an updated meta-analysis. Yonsei Med J. 2013;54:1384–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cui LH, Zhang TT, Shin MH, Kim HN, Choi JS. Influence of polymorphisms in MTHFR 677 C→T, TYMS 3R→2R and MTR 2756 A→G on NSCLC risk and response to platinum-based chemotherapy in advanced NSCLC. Pharmacogenomics. 2011;12:797–808.

    CAS  PubMed  Google Scholar 

  36. Matakidou A, El Galta R, Rudd MF, Webb EL, Bridle H, Eisen T, et al. Prognostic significance of folate metabolism polymorphisms for lung cancer. Br J Cancer. 2007;97:247–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li WJ, Jiang H, Fang XJ, Ye HL, Liu MH, Liu YW, et al. Polymorphisms in thymidylate synthase and reduced folate carrier () genes predict survival outcome in advanced non-small cell lung cancer patients treated with pemetrexed-based chemotherapy. Oncol Lett. 2013;5:1165–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tiseo M, Giovannetti E, Tibaldi C, Camerini A, Di Costanzo F, Barbieri F, et al. Pharmacogenetic study of patients with advanced non-small cell lung cancer (NSCLC) treated with second-line pemetrexed or pemetrexed-carboplatin. Lung Cancer. 2012;78:92–99.

    PubMed  Google Scholar 

  39. Corrigan A, Walker JL, Wickramasinghe S, Hernandez MA, Newhouse SJ, Folarin AA, et al. Pharmacogenetics of pemetrexed combination therapy in lung cancer: pathway analysis reveals novel toxicity associations. Pharm J. 2014;14:411–7.

    CAS  Google Scholar 

  40. Smit EF, Burgers SA, Biesma B, Smit HJ, Eppinga P, Dingemans AM, et al. Randomized phase II and pharmacogenetic study of pemetrexed compared with pemetrexed plus carboplatin in pretreated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2009;27:2038–45.

    CAS  PubMed  Google Scholar 

  41. Adjei AA, Salavaggione OE, Mandrekar SJ, Dy GK, Ziegler KL, Endo C, et al. Correlation between polymorphisms of the reduced folate carrier gene (SLC19A1) and survival after pemetrexed-based therapy in non-small cell lung cancer: a North Central Cancer Treatment Group-based exploratory study. J Thorac Oncol. 2010;5:1346–53.

    PubMed  PubMed Central  Google Scholar 

  42. Perez-Ramirez C, Canadas-Garre M, Alnatsha A, Villar E, Delgado JR, Faus-Dader MJ, et al. Pharmacogenetic predictors of toxicity to platinum based chemotherapy in non-small cell lung cancer patients. Pharmacol Res. 2016;111:877–84.

    CAS  PubMed  Google Scholar 

  43. Kartalou M, Essigmann JM. Recognition of cisplatin adducts by cellular proteins. Mutat Res. 2001;478:1–21.

    CAS  PubMed  Google Scholar 

  44. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 2000;57:1229–35.

    CAS  PubMed  Google Scholar 

  45. Sancar A. DNA repair in humans. Annu Rev Genet. 1995;29:69–105.

    CAS  PubMed  Google Scholar 

  46. Garcia-Campelo R, Alonso-Curbera G, Anton Aparicio LM, Rosell R. Pharmacogenomics in lung cancer: an analysis of DNA repair gene expression in patients treated with platinum-based chemotherapy. Expert Opin Pharmacother. 2005;6:2015–26.

    CAS  PubMed  Google Scholar 

  47. Jin S, Levine AJ. The p53 functional circuit. J Cell Sci. 2001;114(Pt 23):4139–40.

    CAS  PubMed  Google Scholar 

  48. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 2003;13:49–58.

    CAS  PubMed  Google Scholar 

  49. Azzoli CG, Baker S, Temin S, Pao W, Aliff T, Brahmer J, et al. American Society of Clinical Oncology clinical practice guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol. 2009;27:6251–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Benlloch S, Botero ML, Beltran-Alamillo J, Mayo C, Gimenez-Capitan A, de Aguirre I, et al. Clinical validation of a PCR assay for the detection of EGFR mutations in non-small-cell lung cancer: retrospective testing of specimens from the EURTAC trial. PLoS ONE. 2014;9:e89518.

    PubMed  PubMed Central  Google Scholar 

  51. Edge SE, Compton CC, Fritz AG, Green FL, Trotti A, editors. AJCC cancer staging manual. 7 ed. New York: Springer-Verlag; 2010. pp. XV–648.

  52. Jimenez-Varo E, Canadas-Garre M, Henriques CI, Pinheiro AM, Gutierrez-Pimentel MJ, Calleja-Hernandez MA. Pharmacogenetics role in the safety of acenocoumarol therapy. Thromb Haemost. 2014;112:522–36.

    CAS  PubMed  Google Scholar 

  53. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    CAS  PubMed  Google Scholar 

  54. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  Google Scholar 

  55. Team RCR. A language and environment for statistical computing. [Internet]. Available from http://www.r-project.org/. Accessed Oct 2013.

  56. Gao H, Ge RC, Liu HY, Wang Y, Yan S. Effect of ERCC1 polymorphism on the response to chemotherapy and clinical outcome of non-small cell lung cancer. Genet Mol Res. 2014;13:8997–9004.

    CAS  PubMed  Google Scholar 

  57. Li F, Sun X, Sun N, Qin S, Cheng H, Feng J, et al. Association between polymorphisms of ERCC1 and XPD and clinical response to platinum-based chemotherapy in advanced non-small cell lung cancer. Am J Clin Oncol. 2010;33:489–94.

    CAS  PubMed  Google Scholar 

  58. Panov KI, Panova TB, Gadal O, Nishiyama K, Saito T, Russell J, et al. RNA polymerase I-specific subunit CAST/hPAF49 has a role in the activation of transcription by upstream binding factor. Mol Cell Biol. 2006;26:5436–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Russell J, Zomerdijk JC. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci. 2005;30:87–96.

    CAS  PubMed  Google Scholar 

  60. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001;104:107–17.

    CAS  PubMed  Google Scholar 

  61. Park JY, Lee SY, Jeon HS, Bae NC, Chae SC, Joo S, et al. Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomark Prev. 2002;11:23–27.

    CAS  Google Scholar 

  62. Giachino DF, Ghio P, Regazzoni S, Mandrile G, Novello S, Selvaggi G, et al. Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer. Clin Cancer Res. 2007;13:2876–81.

    CAS  PubMed  Google Scholar 

  63. Joerger M, Burgers SA, Baas P, Smit EF, Haitjema TJ, Bard MP, et al. Germline polymorphisms in patients with advanced non-small cell lung cancer receiving first-line platinum-gemcitabine chemotherapy: a prospective clinical study. Cancer. 2012;118:2466–75.

    CAS  PubMed  Google Scholar 

  64. Kalikaki A, Kanaki M, Vassalou H, Souglakos J, Voutsina A, Georgoulias V, et al. DNA repair gene polymorphisms predict favorable clinical outcome in advanced non-small-cell lung cancer. Clin Lung Cancer. 2009;10:118–23.

    CAS  PubMed  Google Scholar 

  65. Kalikaki A, Voutsina A, Koutsopoulos A, Papadaki C, Sfakianaki M, Yachnakis E, et al. ERCC1 SNPs as potential predictive biomarkers in non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Invest. 2015;33:107–13.

    CAS  PubMed  Google Scholar 

  66. Sullivan I, Salazar J, Majem M, Pallares C, Del Rio E, Paez D, et al. Pharmacogenetics of the DNA repair pathways in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Lett. 2014;353:160–6.

    CAS  PubMed  Google Scholar 

  67. Tiseo M, Bordi P, Bortesi B, Boni L, Boni C, Baldini E, et al. ERCC1/BRCA1 expression and gene polymorphisms as prognostic and predictive factors in advanced NSCLC treated with or without cisplatin. Br J Cancer. 2013;108:1695–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Goode EL, Potter JD, Bigler J, Ulrich CM. Methionine synthase D919G polymorphism, folate metabolism, and colorectal adenoma risk. Cancer Epidemiol Biomark Prev. 2004;13:157–62.

    CAS  Google Scholar 

  69. Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 2002;62:4519–24.

    CAS  PubMed  Google Scholar 

  70. Perez-Ramirez C, Canadas-Garre M, Alnatsha A, Villar E, Delgado JR, Faus-Dader MJ, et al. Pharmacogenetic predictors of toxicity to platinum based chemotherapy in non-small cell lung cancer patients. Pharmacol Res. 2016;111:877–84. Submitted

    CAS  PubMed  Google Scholar 

  71. Li X, Shao M, Wang S, Zhao X, Chen H, Qian J, et al. Heterozygote advantage of methylenetetrahydrofolate reductase polymorphisms on clinical outcomes in advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. Tumour Biol. 2014;35:11159–70.

    CAS  PubMed  Google Scholar 

  72. Okuda K, Sasaki H, Hikosaka Y, Kawano O, Yukiue H, Yano M, et al. Excision repair cross complementation group 1 polymorphisms predict overall survival after platinum-based chemotherapy for completely resected non-small-cell lung cancer. J Surg Res. 2011;168:206–12.

    CAS  PubMed  Google Scholar 

  73. Takenaka T, Yano T, Kiyohara C, Miura N, Kouso H, Ohba T, et al. Effects of excision repair cross-complementation group 1 (ERCC1) single nucleotide polymorphisms on the prognosis of non-small cell lung cancer patients. Lung Cancer. 2010;67:101–7.

    PubMed  Google Scholar 

  74. Zhao X, Zhang Z, Yuan Y, Yuan X. Polymorphisms in ERCC1 gene could predict clinical outcome of platinum-based chemotherapy for non-small cell lung cancer patients. Tumour Biol. 2014;35:8335–41.

    CAS  PubMed  Google Scholar 

  75. Zhou W, Gurubhagavatula S, Liu G, Park S, Neuberg DS, Wain JC, et al. Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res. 2004;10:4939–43.

    CAS  PubMed  Google Scholar 

  76. Wu W, Li H, Wang H, Zhao X, Gao Z, Qiao R, et al. Effect of polymorphisms in XPD on clinical outcomes of platinum-based chemotherapy for Chinese non-small cell lung cancer patients. PLoS ONE. 2012;7:e33200.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Su D, Ma S, Liu P, Jiang Z, Lv W, Zhang Y, et al. Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer. 2007;56:281–8.

    PubMed  Google Scholar 

  78. Cheng J, Ha M, Wang Y, Sun J, Chen J, Wang Y, et al. A C118T polymorphism of ERCC1 and response to cisplatin chemotherapy in patients with late-stage non-small cell lung cancer. J Cancer Res Clin Oncol. 2012;138:231–8.

    CAS  PubMed  Google Scholar 

  79. Dong J, Hu Z, Shu Y, Pan S, Chen W, Wang Y, et al. Potentially functional polymorphisms in DNA repair genes and non-small-cell lung cancer survival: a pathway-based analysis. Mol Carcinog. 2012;51:546–52.

    CAS  PubMed  Google Scholar 

  80. Isla D, Sarries C, Rosell R, Alonso G, Domine M, Taron M, et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol. 2004;15:1194–203.

    CAS  PubMed  Google Scholar 

  81. Park SY, Hong YC, Kim JH, Kwak SM, Cho JH, Lee HL, et al. Effect of ERCC1 polymorphisms and the modification by smoking on the survival of non-small cell lung cancer patients. Med Oncol. 2006;23:489–98.

    CAS  PubMed  Google Scholar 

  82. Ryu JS, Hong YC, Han HS, Lee JE, Kim S, Park YM, et al. Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer. 2004;44:311–6.

    PubMed  Google Scholar 

  83. Krawczyk P, Wojas-Krawczyk K, Mlak R, Kucharczyk T, Biernacka B, Milanowski J. Predictive value of ERCC1 single-nucleotide polymorphism in patients receiving platinum-based chemotherapy for locally-advanced and advanced non-small cell lung cancer--a pilot study. Folia Histochem Cytobiol. 2012;50:80–86.

    CAS  PubMed  Google Scholar 

  84. Lv H, Han T, Shi X, Yao Y, Yao Y, Qiu W, et al. Genetic polymorphism of GSTP1 and ERCC1 correlated with response to platinum-based chemotherapy in non-small cell lung cancer. Med Oncol. 2014;31:86.

    PubMed  Google Scholar 

  85. Du Y, Su T, Zhao L, Tan X, Chang W, Zhang H, et al. Associations of polymorphisms in DNA repair genes and MDR1 gene with chemotherapy response and survival of non-small cell lung cancer. PLoS ONE. 2014;9:e99843.

    PubMed  PubMed Central  Google Scholar 

  86. Shi ZH, Shi GY, Liu LG. Polymorphisms in ERCC1 and XPF gene and response to chemotherapy and overall survival of non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8:3132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou C, Ren S, Zhou S, Zhang L, Su C, Zhang Z, et al. Predictive effects of ERCC1 and XRCC3 SNP on efficacy of platinum-based chemotherapy in advanced NSCLC patients. Jpn J Clin Oncol. 2010;40:954–60.

    PubMed  Google Scholar 

  88. Ren S, Zhou S, Wu F, Zhang L, Li X, Zhang J, et al. Association between polymorphisms of DNA repair genes and survival of advanced NSCLC patients treated with platinum-based chemotherapy. Lung Cancer. 2012;75:102–9.

    PubMed  Google Scholar 

  89. Wang J, Zhang Q, Zhang H, Wang Q, Yang X, Gu Y, et al. Association between polymorphisms of ERCC1 and response in patients with advanced non-small cell lung cancer receiving cisplatin-based chemotherapy. Chin J lung Cancer. 2010;13:337–41.

    CAS  Google Scholar 

  90. Huang D, Zhou Y. Nucleotide excision repair gene polymorphisms and prognosis of non-small cell lung cancer patients receiving platinum-based chemotherapy: a meta-analysis based on 44 studies. Biomed Rep. 2014;2:452–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hong CY, Xu Q, Yue Z, Zhang Y, Yuan Y. Correlation of the sensitivity of NP chemotherapy in non-small lung cancer with DNA repair gene XRCC1 polymorphism. Chin J Cancer. 2009;28:1291–7.

    CAS  Google Scholar 

  92. Sun X, Li F, Sun N, Shukui Q, Baoan C, Jifeng F, et al. Polymorphisms in XRCC1 and XPG and response to platinum-based chemotherapy in advanced non-small cell lung cancer patients. Lung Cancer. 2009;65:230–6.

    PubMed  Google Scholar 

  93. Wang ZH, Miao XP, Tan W, Zhang XR, Xu BH, Lin DX. Single nucleotide polymorphisms in XRCC1 and clinical response to platin-based chemotherapy in advanced non-small cell lung cancer. Chin J Cancer. 2004;23:865–8.

    CAS  Google Scholar 

  94. Xu C, Wang X, Zhang Y, Li L. Effect of the XRCC1 and XRCC3 genetic polymorphisms on the efficacy of platinum-based chemotherapy in patients with advanced non-small cell lung cancer. Chin J Lung Cancer. 2011;14:912–7.

    Google Scholar 

  95. Yuan P, Miao XP, Zhang XM, Wang ZH, Tan W, Sun Y, et al. XRCC1 and XPD genetic polymorphisms predict clinical responses to platinum-based chemotherapy in advanced non-small cell lung cancer. Zhonghua Zhong Liu Za Zhi. 2006;28:196–9.

    CAS  PubMed  Google Scholar 

  96. Powrozek T, Mlak R, Krawczyk P, Homa I, Ciesielka M, Koziol P, et al. The relationship between polymorphisms of genes regulating DNA repair or cell division and the toxicity of platinum and vinorelbine chemotherapy in advanced NSCLC patients. Clin Transl Oncol. 2016;18:125–31.

    PubMed  Google Scholar 

  97. Ke HG, Li J, Shen Y, You QS, Yan Y, Dong HX, et al. Prognostic significance of GSTP1, XRCC1 and XRCC3 polymorphisms in non-small cell lung cancer patients. Asian Pac J Cancer Prev. 2012;13:4413–6.

    PubMed  Google Scholar 

  98. Zhang L, Ma W, Li Y, Wu J, Shi GY. Pharmacogenetics of DNA repair gene polymorphisms in non-small-cell lung carcinoma patients on platinum-based chemotherapy. Genet Mol Res. 2014;13:228–36.

    CAS  PubMed  Google Scholar 

  99. Zhao W, Hu L, Xu J, Shen H, Hu Z, Ma H, et al. Polymorphisms in the base excision repair pathway modulate prognosis of platinum-based chemotherapy in advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2013;71:1287–95.

    CAS  PubMed  Google Scholar 

  100. Han B, Guo Z, Ma Y, Kang S, Wang Y, Wei Q, et al. Association of GSTP1 and XRCC1 gene polymorphisms with clinical outcome of advanced non-small cell lung cancer patients with cisplatin-based chemotherapy. Int J Clin Exp Pathol. 2015;8:4113–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu JY, Liu QM, Li LR. Association of GSTP1 and XRCC1 gene polymorphisms with clinical outcomes of patients with advanced non-small cell lung cancer. Genet Mol Res. 2015;14:10331–7.

    CAS  PubMed  Google Scholar 

  102. Liu D, Wu J, Shi GY, Zhou HF, Yu Y. Role of XRCC1 and ERCC5 polymorphisms on clinical outcomes in advanced non-small cell lung cancer. Genet Mol Res. 2014;13:3100–7.

    CAS  PubMed  Google Scholar 

  103. Liao WY, Shih JY, Chang GC, Cheng YK, Yang JC, Chen YM, et al. Genetic polymorphism of XRCC1 Arg399Gln is associated with survival in non-small-cell lung cancer patients treated with gemcitabine/platinum. J Thorac Oncol. 2012;7:973–81.

    CAS  PubMed  Google Scholar 

  104. Zhou M, Ding YJ, Feng Y, Zhang QR, Xiang Y, Wan HY. Association of xeroderma pigmentosum group D (Asp312Asn, Lys751Gln) and cytidine deaminase (Lys27Gln, Ala70Thr) polymorphisms with outcome in Chinese non-small cell lung cancer patients treated with cisplatin-gemcitabine. Genet Mol Res. 2014;13:3310–8.

    CAS  PubMed  Google Scholar 

  105. Tan X, Xian L, Chen X, Shi L, Wang Y, Guo J, et al. Association between ERCC2 Lys751Gln polymorphism and lung cancer risk: a meta-analysis involving 23,370 subjects. Twin Res Human Genet. 2014;17:99–107.

    Google Scholar 

  106. Zhan P, Wang Q, Wei SZ, Wang J, Qian Q, Yu LK, et al. ERCC2/XPD Lys751Gln and Asp312Asn gene polymorphism and lung cancer risk: a meta-analysis involving 22 case-control studies. J Thorac Oncol. 2010;5:1337–45.

    PubMed  Google Scholar 

  107. Wang Y, Yang H, Li H, Li L, Wang H, Liu C, et al. Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett. 2009;285:134–40.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The results of this investigation are part of the doctoral thesis presented by Cristina Pérez-Ramírez at the University of Granada.

Funding

This work was partly supported by a research grant for Cristina Pérez-Ramírez (FPU12/04722), from Ministerio de Educación, Cultura y Deporte.

Author contributions

CP-R revised the bibliography and wrote the protocol for this study and acted as the primary lead in the conception, design, and implementation of the project, data collection, molecular analysis, statistical analysis, and interpretation, as well as all aspects of the development and writing of the article and responses to internal and external reviewers. MC-G supervised the planning of the study protocol and contributed to the conception, design, and implementation of the project, statistical analysis, and interpretation as well as all aspects of the development and writing of the article and responses to internal and external reviewers. AA performed literature review, molecular analysis and interpretation, clinical data collection and interpretation, and collaborated in drafting the manuscript. EV performed molecular and pathological analysis and interpretation, clinical data collection and interpretation, and collaborated in drafting the manuscript. JVB participated in the clinical data collection and interpretation, and provided clinical guidance and feedback for this study and critical review of the manuscript. MJF-D and Miguel ÁC-H participated in article selection, study quality assessment, critical review of the manuscript, and contributed to revisions and responses to internal and external reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Cañadas-Garre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Ramírez, C., Cañadas-Garre, M., Alnatsha, A. et al. Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell lung cancer patients. Pharmacogenomics J 19, 164–177 (2019). https://doi.org/10.1038/s41397-018-0014-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-018-0014-8

This article is cited by

Search

Quick links