Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic meta-analysis of cancer diagnosis following statin use identifies new associations and implicates human leukocyte antigen (HLA) in women

Abstract

We sought to perform a genomic evaluation of the risk of incident cancer in statin users, free of cancer at study entry. Patients who previously participated in two phase IV trials (TNT and IDEAL) with genetic data were used (npooled = 11,196). A GWAS meta-analysis using Cox modeling for the prediction of incident cancer was conducted in the pooled cohort and sex-stratified. rs13210472 (near HLA-DOA gene) was associated with higher risk of incident cancer amongst women with prevalent coronary artery disease (CAD) taking statins (hazard ratio [HR]: 2.66, 95% confidence interval [CI]: 1.88–3.76, P = 3.5 × 10−8). Using the UK Biobank and focusing exclusively on women statin users with CAD (nfemale = 2952), rs13210472 remained significantly associated with incident cancer (HR: 1.71, 95% CI: 1.14–2.56, P = 9.0 × 10−3). The association was not observed in non-statin users. In this genetic meta-analysis, we have identified a variant in women statin users with prevalent CAD that was associated with incident cancer, possibly implicating the human leukocyte antigen pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of the genome-wide association meta-analysis analysis of genetic variants of minor allele frequency ≥ 1% for time to occurrence of cancer using a Cox proportional hazards regression from the TNT and IDEAL cohorts.
Fig. 2: Diagram summarizing the associations observed between rs13210472 and incident cancer within the replication cohort based on multivariable Cox regression models.

Similar content being viewed by others

References

  1. Taylor F, Huffman M, Macedo A, Moore T, Burke M, Davey Smith G, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;31:CD004816.

    Google Scholar 

  2. Silverman M, Ference B, Im K, Wiviott S, Giugliano R, Grundy S, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions a systematic review and meta-analysis. JAMA. 2016;316:1289–97.

    Article  CAS  PubMed  Google Scholar 

  3. Cholesterol Treatment Trialists (CTT) Collaborators. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PLoS ONE. 2012;7:e29849.

    Article  CAS  Google Scholar 

  4. Wenger N, Lewis S, Welty F, Herrington D, Bittner V.TNT Steering Committee and Investigators Beneficial effects of aggressive low-density liprotein cholesterol lowering in women with stable coronary heart disease in the Treating to New Targets (TNT) study. BMJ. 2007;94:434–9.

    Google Scholar 

  5. Sacks F, Pfeffer M, Moye L, Rouleau J, Rutherford J, Cole T.Cholesterol and Recurrent Events Trial investigators et al.The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.N Engl J Med. 1996;335:1001–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ford I, Murray H, Packard CJ, Shepherd J, Macfarlane PW, Cobbe SM. Long-term follow-up of the west of Scotland Coronary Prevention Study. N Engl J Med. 2007;357:1477–86.

    Article  CAS  PubMed  Google Scholar 

  7. Shepherd J, Blauw G, Murphy M, Bollen E, Buckley B, Cobbe S, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.

    Article  CAS  PubMed  Google Scholar 

  8. Blais L, Desgagné A, LeLorier J. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer. JAMA Intern Med. 2000;160:2363–8.

    Article  CAS  Google Scholar 

  9. Kuoppala J, Lamminpaa A, Pukkala E. Statins and cancer: a systematic review and meta-analysis. EJC. 2008;44:2122–32.

    Article  CAS  Google Scholar 

  10. Poynter J, Gruber S, Higgins P, Almog R, Bonner J, Rennert H, et al. Statins and the risk of colorectal cancer. N Engl J Med. 2005;352:2184–92.

    Article  CAS  PubMed  Google Scholar 

  11. Tran KT, McMenamin ÚC, Coleman HG, Cardwell CR, Murchie P, Iversen L, et al. Statin use and risk of liver cancer: evidence from two population-based studies. Int J Cancer. 2020;146:1250–60. https://doi.org/10.1002/ijc.32426. Epub 4 Jun 2019.

    Article  CAS  PubMed  Google Scholar 

  12. LaRosa J, Grundy S, Waters D, Shear C, Barter P, Fruchart J, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.

    Article  CAS  PubMed  Google Scholar 

  13. Pedersen T, Faergeman O, Kastelein J, Olsson A, Tikkanen M, Holme I, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA. 2005;294:2437–45.

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen TR, Faergeman O, Kastelein JJP, Olsson AG, Tikkanen MJ, Holme I, et al. Design and baseline characteristics of the incremental decrease in end points through aggressive lipid lowering study. Am J Cardiol. 2004;94:720–4.

    Article  PubMed  Google Scholar 

  15. Waters D, Guyton J, Herrington D, McGowan M, Wenger N, Shear C, et al. Treating to New Targets (TNT) study: does lowering low-density lipoprotein cholesterol levels below currently recommended guidelines yield incremental clinical benefit? Am J Cardiol. 2004;93:154–8.

    Article  PubMed  Google Scholar 

  16. Wu Y, Byrne EM, Zheng Z, Kemper KE, Yengo L, Mallett AJ, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat Commun. 2019;10:1891. https://doi.org/10.1038/s41467-019-09572-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemieux-Perreault L, Legault M, Asselin G, Dubé M. Genipe: an automated genome-wide imputation pipeline with automatic reporting and statistical tools. Bioinformatics. 2016;32:3661–3.

    PubMed  PubMed Central  Google Scholar 

  18. Mägi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinforma. 2010;11:288.

    Article  Google Scholar 

  19. Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Higgins J, Thompson S. Quantifying heterogeneity in a meta-analysis. StatMed. 2002;21:1539–58.

    Google Scholar 

  21. Cochran W. The combination of estimates from different experiements. Biometrics. 1954;10:101–29.

    Article  Google Scholar 

  22. Nelson CP, Goel AA-O, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. (1546–1718 (Electronic)).

  23. Meijers W, Boer R. Common risk factors for heart failure and cancer. Cardiovasc Res. 2019;115:844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiina T, Hosomichi K, Inoko H, Kulski J. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54:15–39.

    Article  CAS  PubMed  Google Scholar 

  25. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics. 2016;32:3207–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics. 2019;35:4851–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Couture A, Garnier A, Docagne F, Boyer O, Vivien D, Le-Mauff B, et al. HLA-Class II artificial antigen presenting cells in CD4+ T cell-based immunotherapy. Front Immunol. 2019;10:1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front Immunol. 2019;10:353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smitten AL, Simon TA, Hochberg MC, Suissa S. A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. Arthritis Res Ther. 2008;10:R45.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L. Sexual dimorphism of immune responses: a new perspective in cancer immunotherapy. Front Immunol. 2018;9:552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. van Vollenhoven RF. Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med. 2009;7:12.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nair B, Taylor-Gjevre R, Wu L, Jin S, Quail JM. Incidence and prevalence of rheumatoid arthritis in Saskatchewan, Canada: 2001-2014. BMC Rheumatol. 2019;3:28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frostegård J, Zhang Y, Sun J, Yan K, Liu A. Oxidized low‐density lipoprotein (OxLDL)–treated dendritic cells promote activation of T cells in human atherosclerotic plaque and blood, which is repressed by statins: microRNA let‐7c is integral to the effect. J Am Heart Assoc. 5:e003976.

  34. Nadiminty N, Tummala R, Lou W, Zhu Y, Shi X-B, Zou JX, et al. MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS ONE. 2012;7:e32832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mizuno R, Kawada K, Sakai Y. The molecular basis and therapeutic potential of Let-7 MicroRNAs against colorectal cancer. Can J Gastroenterol Hepatol. 2018;2018:5769591.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Biamonte F, Santamaria G, Sacco A, Perrone FM, Di Cello A, Battaglia AM, et al. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci Rep. 2019;9:5668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 2014;342:43–51.

    Article  CAS  PubMed  Google Scholar 

  38. Coussens L, Werb Z. Inflammation and cancer. Nature. 2010;420:860–7.

    Article  CAS  Google Scholar 

  39. Rhodes DA, Trowsdale J. Genetics and molecular genetics of the MHC. Rev Immunogenet. 1999;1:21–31.

    CAS  PubMed  Google Scholar 

  40. Nangalia J, Campbell PJ. Genome sequencing during a patient’s journey through cancer. N Engl J Med. 2019;381:2145–56.

    Article  CAS  PubMed  Google Scholar 

  41. Trowsdale J. Genomic structure and function in the MHC. Trends Genet. 1993;9:117–22.

    Article  CAS  PubMed  Google Scholar 

  42. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–99.

    Article  CAS  PubMed  Google Scholar 

  43. Howell WM. HLA and disease: guilt by association. Int J Immunogenet. 2014;41:1–12.

    Article  CAS  PubMed  Google Scholar 

  44. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009;373:659–72.

    Article  CAS  PubMed  Google Scholar 

  45. Busch R, De Riva A, Hadjinicolaou AV, Jiang W, Hou T, Mellins ED. On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Exp Rev Mol Med. 2012;14:e15–e15.

    Article  CAS  Google Scholar 

  46. Illing PT, Vivian JP, Purcell AW, Rossjohn J, McCluskey J. Human leukocyte antigen-associated drug hypersensitivity. Curr Opin Immunol. 2013;25:81–89.

    Article  CAS  PubMed  Google Scholar 

  47. Kennedy AE, Ozbek U, Dorak MT. What has GWAS done for HLA and disease associations? Int J Immunogenet. 2017;44:195–211.

    Article  CAS  PubMed  Google Scholar 

  48. Hansson G. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  49. Schreiber R, Old L, Smyth M. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The TNT and IDEAL trials were sponsored by Pfizer. Pfizer granted access to data but had no role in the design of the current study, the drafting of this report, or the decision to submit these analyses for publication.

Funding

The current study was funded in part by grants from Genome Canada and Genome Quebec and the Canadian Institutes of Health Research (CIHR). This research has been conducted using the UK Biobank Resource under Application Number 20168. MS is supported by a scholarship from FRQS. M-AL is supported by a scholarship from the CIHR. M-PD holds the Canada Research Chair in Precision Medicine Data Analysis, J-CT holds the Canada Research Chair in Personalized Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Dubé.

Ethics declarations

Conflict of interest

M-PD has received research support from AstraZeneca, DalCor, Pfizer, GSK, Servier and honoraria from DalCor, Servier, and GSK. J-CT has received research support from Amarin, AstraZeneca, DalCor, Eli-Lilly, Hoffmann-LaRoche, Merck, Pfizer, Sanofi and Servier, and honoraria (to his institution) from Hoffmann-LaRoche, Pfizer, Servier, and Valeant. J-CT and M-PD have an equity interest in DalCor. MS has received grant funding from Pfizer, BMS, and Exelixis. All other authors have no conflicts of interest or disclosures to state.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Lemaçon, A., Legault, MA. et al. Genetic meta-analysis of cancer diagnosis following statin use identifies new associations and implicates human leukocyte antigen (HLA) in women. Pharmacogenomics J 21, 446–457 (2021). https://doi.org/10.1038/s41397-021-00221-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00221-z

Search

Quick links