Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exploring the effects of bound rubber phase on the physical properties of nano-silica composites with a vitrimer-like bond exchangeable matrix

Abstract

We demonstrate the preparation and unique properties of composite vitrimer-like materials containing silica nanoparticles (SNPs). The matrix is composed of polyacrylate-based polymers crosslinked via a pyridine–bromo quaternization reaction, where the quaternized pyridine at the crosslinking point exchanges the bond pair via trans-N-alkylation at high temperatures. Homogeneous composite samples without a large aggregation of SNPs were prepared within the silica volume fraction range (ϕP) from 0.06 to 0.36. The formation of the bound rubber phase and the strong adhesion between the SNP and matrix are admitted in the data from structural, thermal, and mechanical investigations. The crosslinked composites exhibit great stress relaxation at high temperatures because of bond exchange, wherein unique bimodal relaxation behaviors are observed for the samples with high ϕP because of the bound rubber phase. In the final section, some useful functions, such as reprocessability and recyclability, derived from the bond exchange nature are exhibited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Himenz PC, Lodge TP. Polymer chemistry. 2nd ed. Boca Raton: CRC Press; 2007.

  2. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater. 2011;10:14–27.

    Article  CAS  PubMed  Google Scholar 

  3. Zou WK, Dong JT, Luo YW, Zhao Q, Xie T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater. 2017;29:1606100.

    Article  Google Scholar 

  4. Zhang ZP, Rong MZ, Zhang MQ. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog Polym Sci. 2018;80:39–93.

    Article  CAS  Google Scholar 

  5. Chakma P, Konkolewicz D. Dynamic covalent bonds in polymeric materials. Angew Chem Int Ed. 2019;58:9682–95.

    Article  CAS  Google Scholar 

  6. Zheng N, Xu Y, Zhao Q, Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev. 2021;121:1716–45.

    Article  CAS  PubMed  Google Scholar 

  7. Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR. et al. A thermally re-mendable cross-linked polymeric material. Science. 2002;295:1698–702.

    Article  CAS  PubMed  Google Scholar 

  8. Otsuka H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J. 2013;45:879–91.

    Article  CAS  Google Scholar 

  9. Liu T, Zhao BM, Zhang JW. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer. 2020;194:122392.

    Article  CAS  Google Scholar 

  10. Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science. 2011;334:965–8.

    Article  CAS  PubMed  Google Scholar 

  11. Winne JM, Leibler L, Du Prez FE. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym Chem. 2019;10:6091–108.

    Article  CAS  Google Scholar 

  12. Capelot M, Unterlass MM, Tournilhac F, Leibler L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012;1:789–92.

    Article  CAS  PubMed  Google Scholar 

  13. Capelot M, Montarnal D, Tournilhac F, Leibler L. Metal-catalyzed transesterification for healing and assembling of thermosets. J Am Chem Soc. 2012;134:7664–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schoustra SK, Dijksman JA, Zuilhof H, Smulders MMJ. Molecular control over vitrimer-like mechanics – tuneable dynamic motifs based on the Hammett equation in polyimine materials. Chem Sci. 2021;12:293–302.

    Article  CAS  Google Scholar 

  15. Fan CJ, Wen ZB, Xu ZY, Xiao Y, Wu D, Yang KK. et al. Adaptable strategy to fabricate self-healable and reprocessable poly(thiourethane-urethane) elastomers via reversible thiol-isocyanate click chemistry. Macromolecules. 2020;53:4284–93.

    Article  CAS  Google Scholar 

  16. Snyder RL, Lidston CAL, De Hoe GX, Parvulescu MJS, Hillmyer MA, Coates GW. Mechanically robust and reprocessable imine exchange networks from modular polyester pre-polymers. Polym Chem. 2020;11:5346–55.

    Article  CAS  Google Scholar 

  17. Chakma P, Morley CN, Sparks JL, Konkolewicz D. Exploring how vitrimer-like properties can be achieved from dissociative exchange in anilinium salts. Macromolecules. 2020;53:1233–44.

    Article  CAS  Google Scholar 

  18. Obadia MM, Jourdain A, Cassagnau P, Montarnal D, Drockenmuller E. Tuning the viscosity profile of ionic vitrimers incorporating 1,2,3-triazolium cross-links. Adv Funct Mater. 2017;27:1703258.

    Article  Google Scholar 

  19. Scheutz GM, Lessard JJ, Sims MB, Sumerlin BS. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J Am Chem Soc. 2019;141:16181–96.

    Article  CAS  PubMed  Google Scholar 

  20. Elling BR, Dichtel WR. Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Cent Sci. 2020;6:1488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayashi M. Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept. Polymers. 2020;12:1322.

    Article  CAS  PubMed Central  Google Scholar 

  22. Podgorski M, Fairbanks BD, Kirkpatrick BE, McBride M, Martinez A, Dobson A. et al. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in Covalent Adaptable Networks (CANs). Adv Mater. 2020;32:1906876

    Article  CAS  Google Scholar 

  23. Hayashi M, Yano R, Takasu A. Synthesis of amorphous low T-g polyesters with multiple COOH side groups and their utilization for elastomeric vitrimers based on post-polymerization cross-linking. Polym Chem. 2019;10:2047–56.

    Article  CAS  Google Scholar 

  24. Hayashi M, Yano R. Fair investigation of cross-link density effects on the bond-exchange properties for trans-esterification-based vitrimers with identical concentrations of reactive groups. Macromolecules. 2020;53:182–9.

    Article  CAS  Google Scholar 

  25. Hayashi M. Dominant factor of bond-exchange rate for catalyst-free polyester vitrimers with internal tertiary amine moieties. ACS Appl Polym Mater. 2020;2:5365–70.

    Article  CAS  Google Scholar 

  26. Chen M, Si HW, Zhang H, Zhou L, Wu YP, Song LX. et al. The crucial role in controlling the dynamic properties of polyester-based epoxy vitrimers: the density of exchangeable ester bonds (nu). Macromolecules. 2021;54:10110–7.

    Article  CAS  Google Scholar 

  27. Hayashi M, Oba Y, Kimura T, Takasu A. Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-N-alkylation bond exchange. Polym J. 2021;53:835–40.

    Article  CAS  Google Scholar 

  28. Kaiser S, Jandl J, Novak P, Schlogl S. Design and characterisation of vitrimer-like elastomeric composites from HXNBR rubber. Soft Matter. 2020;16:8577–90.

    Article  CAS  PubMed  Google Scholar 

  29. Liu YJ, Tang ZH, Chen Y, Zhang CF, Guo BC. Engineering of beta-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites. ACS Appl Mater Interfaces. 2018;10:2992–3001.

  30. Tang ZH, Liu YJ, Guo BC, Zhang LQ. Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds. Macromolecules. 2017;50:7584–92.

    Article  CAS  Google Scholar 

  31. Legrand A, Soulie-Ziakovic C. Silica-epoxy vitrimer nanocomposites. Macromolecules. 2016;49:5893–902.

    Article  CAS  Google Scholar 

  32. Chen X, Li LQ, Wei T. Venerus DC, Torkelson JM. Reprocessable polyhydroxyurethane network composites: effect of filler surface functionality on cross-link density recovery and stress relaxation. ACS Appl Mater Interfaces. 2019;11:2398–407.

    Article  CAS  PubMed  Google Scholar 

  33. Mun GA, Nurkeeva ZS, Beissegul AB, Dubolazov AV, Urkimbaeva PI, Park K. et al. Temperature-responsive water-soluble copolymers based on 2-hydroxyethyl acrylate and butyl acrylate. Macromol Chem Phys. 2007;208:979–87.

    Article  CAS  Google Scholar 

  34. Kato K, Matsui D, Mayumi K, Ito K. Synthesis, structure, and mechanical properties of silica nanocomposite polyrotaxane gels. Beilstein J Org Chem. 2015;11:2194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Zhang Z, Friedrich K, Eger C. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 2006;54:1833–42.

    Article  CAS  Google Scholar 

  36. Chevigny C, Jouault N, Dalmas F, Boue F, Jestin J. Tuning the mechanical properties in model nanocomposites: influence of the polymer-filler interfacial interactions. J Polym Sci Pt B-Polym Phys. 2011;49:781–91.

    Article  CAS  Google Scholar 

  37. Inoue T, Narihisa Y, Katashima T, Kawasaki S, Tada T. A Rheo-optical study on reinforcement effect of silica particle filled rubber. Macromolecules. 2017;50:8072–82.

    Article  CAS  Google Scholar 

  38. Asai F, Seki T, Hoshino T, Liang XB, Nakajima K, Takeoka Y. Silica nanoparticle reinforced composites as transparent elastomeric damping materials. ACS Appl Nano Mater. 2021;4:4140–52.

    Article  CAS  Google Scholar 

  39. Lewis TB, Nielsen LE. Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci. 1970;14:1449–71.

    Article  CAS  Google Scholar 

  40. Qu LL, Wang LJ, Xie XM, Yu GZ, Bu SH. Contribution of silica-rubber interactions on the viscoelastic behaviors of modified solution polymerized styrene butadiene rubbers (M-S-SBRs) filled with silica. Rsc Adv. 2014;4:64354–63.

    Article  CAS  Google Scholar 

  41. Yoon B, Kim JY, Hong U, Oh MK, Kim M, Han SB. et al. Dynamic viscoelasticity of silica-filled styrene-butadiene rubber/polybutadiene rubber (SBR/BR) elastomer composites. Compos B Eng. 2020;187:107865

    Article  CAS  Google Scholar 

  42. Qian DY, Meng FL. Modelling Mullins effect induced by chain delamination and reattachment. Polymer. 2021;222:123608.

    Article  CAS  Google Scholar 

  43. Gusev AA. Micromechanical mechanism of reinforcement and losses in filled rubbers. Macromolecules. 2006;39:5960.

    Article  CAS  Google Scholar 

  44. Bray DJ, Dittanet P, Guild FJ, Kinloch AJ, Masania K, Pearson RA. et al. The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size. Polymer. 2013;54:7022–32.

    Article  CAS  Google Scholar 

  45. Liang YL, Pearson RA. Toughening mechanisms in epoxy-silica nanocomposites (ESNs). Polymer. 2009;50:4895–905.

    Article  CAS  Google Scholar 

  46. Hsieh TH, Kinloch AJ, Masania K, Taylor AC, Sprenger S. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer. 2010;51:6284–94.

    Article  CAS  Google Scholar 

  47. Zhong LY, Hao YX, Zhang JH, Wei F, Li TC, Miao MH. et al. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin. Macromolecules. 2022;55:595–607.

    Article  CAS  Google Scholar 

  48. Chen Q, Gong SS, Moll J, Zhao D, Kumar SK, Colby RH. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 2015;4:398–402.

    Article  CAS  PubMed  Google Scholar 

  49. Ge S, Samanta S, Li B, Carden GP, Cao P-F, Sokolov AP. Unravelling the mechanism of viscoelasticity in polymers with phase-separated dynamic bonds. ACS Nano. 2022;16:4746–55.

    Article  CAS  PubMed  Google Scholar 

  50. Berriot J, Montes H, Lequeux F, Long D, Sotta P. Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules. 2002;35:9756–62.

    Article  CAS  Google Scholar 

  51. Li LQ, Chen X, Jin KL, Torkelson JM. Vitrimers designed both to strongly suppress creep and to recover original cross-link density after reprocessing: quantitative theory and experiments. Macromolecules. 2018;51:5537–46.

    Article  CAS  Google Scholar 

  52. Hayashi M, Chen L. Functionalization of triblock copolymer elastomers by cross-linking the end blocks via trans-N-alkylation-based exchangeable bonds. Polym Chem. 2020;11:1713–9.

    Article  CAS  Google Scholar 

  53. Holt AP, Griffin PJ, Bocharova V, Agapov AL, Imel AE, Dadmun MD. et al. Dynamics at the polymer/nanoparticle interface in poly(2-vinylpyridine)/silica nanocomposites. Macromolecules. 2014;47:1837–43.

    Article  CAS  Google Scholar 

  54. Skountzos EN, Karadima KS, Mavrantzas VG. Structure and dynamics of highly attractive polymer nanocomposites in the semi-dilute regime: the role of interfacial domains and bridging chains. Polymers. 2021;13:2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hayashi M, Matsushima S, Noro A, Matsushita Y. Mechanical property enhancement of ABA block copolymer-based elastomers by incorporating transient cross-links into soft middle block. Macromolecules. 2015;48:421.

    Article  CAS  Google Scholar 

  56. Baeza GP, Dessi C, Costanzo S, Zhao D, Gong SS, Alegria A. et al. Network dynamics in nanofilled polymers. Nat Commun. 2016;7:11368

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Y. Sakurai for her assistance with the SEM observation. The SAXS measurements were performed in beamline BL-6A at the Photon Factory (PF) of the High Energy Accelerator Research Organization in Tsukuba, Japan (KEK). This work was supported by the TOYOAKI Scholarship Foundation (MH). The SEM observation, DMA measurements, and stress-relaxation tests were supported by the Equipment Sharing Division, Organization for Co-Creation Research and Social Contributions, Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihiro Hayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Hayashi, M. Exploring the effects of bound rubber phase on the physical properties of nano-silica composites with a vitrimer-like bond exchangeable matrix. Polym J 54, 1307–1319 (2022). https://doi.org/10.1038/s41428-022-00654-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00654-8

This article is cited by

Search

Quick links