Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases

Abstract

Protein phosphorylation is known to be one of the keystones of signal sensing and transduction in all living organisms. Once thought to be essentially confined to the eukaryotic kingdoms, reversible phosphorylation on serine, threonine, and tyrosine residues, has now been shown to play a major role in many prokaryotes, where the number of Ser/Thr protein kinases (STPKs) equals or even exceeds that of two-component systems. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most studied organisms for the role of STPK-mediated signaling in bacteria. Driven by the interest and tractability of these enzymes as potential therapeutic targets, extensive studies revealed the remarkable conservation of protein kinases and their cognate phosphatases across evolution, and their involvement in bacterial physiology and virulence. Here, we present an overview of the current knowledge of mycobacterial STPK structures and kinase activation mechanisms, and we then focus on PknB and PknG, two well-characterized STPKs that are essential for the intracellular survival of the bacillus. We summarize the mechanistic evidence that links PknB to the regulation of peptidoglycan synthesis in cell division and morphogenesis, and the major findings that establish PknG as a master regulator of central carbon and nitrogen metabolism. Two decades after the discovery of STPKs in M. tuberculosis, the emerging landscape of O-phosphosignaling is starting to unveil how eukaryotic-like kinases can be engaged in unique, non-eukaryotic-like, signaling mechanisms in mycobacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.

    CAS  PubMed  Google Scholar 

  2. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995;9:576–96.

    CAS  PubMed  Google Scholar 

  3. Cheek S, Ginalski K, Zhang H, Grishin NV. A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol. 2005;5:6.

    PubMed  PubMed Central  Google Scholar 

  4. Hoch JA. Two-component and phosphorelay signal transduction. Curr Op Microbiol. 2000;3:165–70.

    CAS  Google Scholar 

  5. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215.

    CAS  PubMed  Google Scholar 

  6. Zhang CC. Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol. 1996;20:9–15.

    PubMed  Google Scholar 

  7. Kennelly PJ. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett. 2002;206:1–8.

    CAS  PubMed  Google Scholar 

  8. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. Structural and functional diversity of the microbial kinome. Plos Biol. 2007;5:e17.

    PubMed  PubMed Central  Google Scholar 

  9. Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea: evolution of the ‘eukaryotic’ protein kinase superfamily. Genome Res. 1998;8:1038–47.

    CAS  PubMed  Google Scholar 

  10. Stancik IA, Šestak MS, Ji B, Axelson-Fisk M, Franjevic D, Jers C, et al. Serine/Threonine protein kinases from Bacteria, Archaea and Eukarya share a common evolutionary origin deeply rooted in the tree of life. J Mol Biol. 2018;430:27–32.

    CAS  PubMed  Google Scholar 

  11. Pereira SFF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011;75:192–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Burnside K, Rajagopal L. Regulation of prokaryotic gene expression by eukaryotic-like enzymes. Curr Op Microbiol. 2012;15:125–31.

    CAS  Google Scholar 

  13. Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence. 2014;5:863–85.

    PubMed  Google Scholar 

  14. Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol. 2015;24:47–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev. 2016;40:41–56.

    CAS  PubMed  Google Scholar 

  16. Janczarek M, Vinardell J-M, Lipa P, Karaś M. Hanks-type serine/threonine protein kinases and phosphatases in bacteria: roles in signaling and adaptation to various environments. Int J Mol Sci. 2018;19:2872.

    PubMed Central  Google Scholar 

  17. Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev. 2016;40:398–417.

    CAS  PubMed  Google Scholar 

  18. Sherman DR, Grundner C. Agents of change—concepts in Mycobacterium tuberculosis Ser/Thr/Tyr phosphosignalling. Mol Microbiol. 2014;94:231–41.

    CAS  PubMed  Google Scholar 

  19. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44.

    CAS  PubMed  Google Scholar 

  20. Mahajan A, Yuan C, Lee H, Chen ES-W, Wu P-Y, Tsai M-D. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal. 2008;1:re12.

    PubMed  Google Scholar 

  21. Wehenkel A, Bellinzoni M, Graña M, Durán R, Villarino A, Fernandez P, et al. Mycobacterial Ser/Thr protein kinases and phosphatases: Physiological roles and therapeutic potential. Biochim Biophys Acta. 2008;1784:193–202.

    CAS  PubMed  Google Scholar 

  22. Khan MZ, Kaur P, Nandicoori VK. Targeting the messengers: Serine/threonine protein kinases as potential targets for antimycobacterial drug development. IUBMB Life. 2018;70:889–904.

    CAS  PubMed  Google Scholar 

  23. Av-Gay Y, Jamil S, Drews SJ. Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun. 1999;67:5676–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Greenstein AE, Grundner C, Echols N, Gay LM, Lombana TN, Miecskowski CA, et al. Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J Mol Microbiol Biotechnol. 2005;9:167–81.

    CAS  PubMed  Google Scholar 

  25. Chao J, Wong D, Zheng X, Poirier V, Bach H, Hmama Z, et al. Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta. 2010;1804:620–7.

    CAS  Google Scholar 

  26. Molle V, Kremer L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol. 2010;75:1064–77.

    CAS  PubMed  Google Scholar 

  27. Chakraborti PK, Matange N, Nandicoori VK, Singh Y, Tyagi JS, Visweswariah SS. Signalling mechanisms in Mycobacteria. Tuberculosis. 2011;91:432–40.

    CAS  PubMed  Google Scholar 

  28. Ortiz-Lombardía M, Pompeo F, Boitel B, Alzari PM. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J Biol Chem. 2003;278:13094–13100.

    PubMed  Google Scholar 

  29. Young TA, Delagoutte B, Endrizzi JA, Falick AM, Alber T. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol. 2003;10:168–74.

    CAS  PubMed  Google Scholar 

  30. Cox S, Radzio-Andzelm E, Taylor SS. Domain movements in protein kinases. Curr Opin Struct Biol. 1994;4:893–901.

    CAS  PubMed  Google Scholar 

  31. Av-Gay Y, Everett M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol. 2000;8:238–44.

    CAS  PubMed  Google Scholar 

  32. Lisa M-N, Wagner T, Alexandre M, Barilone N, Raynal B, Alzari PM, et al. The crystal structure of PknI from Mycobacterium tuberculosis shows an inactive, pseudokinase-like conformation. FEBS J. 2017;284:602–14.

    CAS  PubMed  Google Scholar 

  33. Yan Q, Jiang D, Qian L, Zhang Q, Zhang W, Zhou W, et al. Structural insight into the activation of PknI kinase from M. tuberculosis via dimerization of the extracellular sensor domain. Structure. 2017;25:1286–94.

    CAS  PubMed  Google Scholar 

  34. Molle V, Kremer L, Girard-Blanc C, Besra GS, Cozzone AJ, Prost J-F. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry. 2003;42:15300–9.

    CAS  PubMed  Google Scholar 

  35. Durán R, Villarino A, Bellinzoni M, Wehenkel A, Fernandez P, Boitel B, et al. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem Biophys Res Commun. 2005;333:858–67.

    PubMed  Google Scholar 

  36. Canova MJ, Veyron-Churlet R, Zanella-Cléon I, Cohen-Gonsaud M, Cozzone AJ, Becchi M, et al. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics. 2008;8:521–33.

    CAS  PubMed  Google Scholar 

  37. Zheng J, Liu L, Liu B, Jin Q. Phosphoproteomic analysis of bacillus Calmette–Guérin using gel-based and gel-free approaches. J Proteom. 2015;126:189–99.

    CAS  Google Scholar 

  38. Boitel B, Ortiz-Lombardía M, Durán R, Pompeo F, Cole ST, Cerveñansky C, et al. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol. 2003;49:1493–508.

    CAS  PubMed  Google Scholar 

  39. Greenstein AE, Echols N, Lombana TN, King DS, Alber T. Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. J Biol Chem. 2007;282:11427–35.

    CAS  PubMed  Google Scholar 

  40. Ravala SK, Singh S, Yadav GS, Kumar S, Karthikeyan S, Chakraborti PK. Evidence that phosphorylation of threonine in the GT motif triggers activation of PknA, a eukaryotic-type serine/threonine kinase from Mycobacterium tuberculosis. FEBS J. 2015;282:1419–31.

    CAS  PubMed  Google Scholar 

  41. Gay LM, Ng H-L, Alber T. A conserved dDimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis. J Mol Biol. 2006;360:409–20.

    CAS  PubMed  Google Scholar 

  42. Wehenkel A, Fernandez P, Bellinzoni M, Catherinot V, Barilone N, Labesse G, et al. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett. 2006;580:3018–22.

    CAS  PubMed  Google Scholar 

  43. Lombana TN, Echols N, Good MC, Thomsen ND, Ng H-L, Greenstein AE, et al. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure. 2010;18:1667–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell. 2005;122:901–13.

    CAS  PubMed  Google Scholar 

  45. Wagner T, Alexandre M, Durán R, Barilone N, Wehenkel A, Alzari PM, et al. The crystal structure of the catalytic domain of the ser/thr kinase PknA from M. tuberculosis shows an Src-like autoinhibited conformation. Proteins. 2015;83:982–8.

    CAS  PubMed  Google Scholar 

  46. Rakette S, Donat S, Ohlsen K, Stehle T. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. PLoS ONE. 2012;7:e39136.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Molle V, Soulat D, Jault J-M, Grangeasse C, Cozzone AJ, Prost J-F. Two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosis. FEMS Microbiol Lett. 2004;234:215–23.

    CAS  PubMed  Google Scholar 

  48. Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, et al. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol. 2005;350:953–63.

    CAS  PubMed  Google Scholar 

  49. Grundner C, Gay LM, Alber T. Mycobacterium tuberculosisserine/threonine kinases PknB, PknD, PknE, and PknF phosphorylate multiple FHA domains. Prot Sci. 2005;14:1918–21.

    CAS  Google Scholar 

  50. Wagner T, André-Leroux G, Hindie V, Barilone N, Lisa M-N, Hoos S et al. Structural insights into the functional versatility of an FHA domain protein in mycobacterial signaling. Sci Signal. (in press).

  51. Good MC, Greenstein AE, Young TA, Ng H-L, Alber T. Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric β propeller. J Mol Biol. 2004;339:459–69.

    CAS  PubMed  Google Scholar 

  52. Cavazos A, Prigozhin DM, Alber T. Structure of the sensor domain of Mycobacterium tuberculosis PknH receptor kinase reveals a conserved binding cleft. J Mol Biol. 2012;422:488–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeats C, Finn RD, Bateman A. The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci. 2002;27:438.

    CAS  PubMed  Google Scholar 

  54. Barthe P, Mukamolova GV, Roumestand C, Cohen-Gonsaud M. The structure of PknB extracellular PASTA domain from Mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure. 2010;18:606–15.

    CAS  PubMed  Google Scholar 

  55. Prigozhin DM, Papavinasasundaram KG, Baer CE, Murphy KC, Moskaleva A, Chen TY, et al. Structural and genetic analyses of the Mycobacterium tuberculosis protein kinase B sensor domain identify a potential ligand-binding site. J Biol Chem. 2016;291:22961–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Squeglia F, Marchetti R, Ruggiero A, Lanzetta R, Marasco D, Dworkin J, et al. Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J Am Chem Soc. 2011;133:20676–9.

    CAS  PubMed  Google Scholar 

  57. Mir M, Asong J, Li X, Cardot J, Boons G-J, Husson RN. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 2011;7:e1002182.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Q, Marchetti R, Prisic S, Ishii K, Arai Y, Ohta I, et al. A Comprehensive study of the interaction between peptidoglycan fragments and the extracellular domain of Mycobacterium tuberculosis Ser/Thr kinase PknB. ChemBioChem. 2017;18:2094–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, et al. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol. 2017;307:1–10.

    CAS  PubMed  Google Scholar 

  60. Kaur P, Rausch M, Malakar B, Watson U, Damle NP, Chawla Y, et al. LipidII interaction with specific residues of Mycobacterium tuberculosis PknB extracytoplasmic domain governs its optimal activation. Nat Commun. 2019;10:1231.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zucchini L, Mercy CXN, Garcia PS, Cluzel C, Gueguen-Chaignon V, Galisson F. et al.PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae. Nat Microbiol. 2017;3:197–209.

    PubMed  Google Scholar 

  62. Shah IM, Laaberki M-H, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 2008;135:486–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Prisic S, Dankwa S, Schwartz D, Chou MF, Locasale JW, Kang CM, et al. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci USA. 2010;107:7521–6.

    CAS  PubMed  Google Scholar 

  64. Fortuin S, Tomazella GG, Nagaraj N, Sampson SL, Gey van Pittius NC, Soares NC, et al. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog. Front Microbiol. 2015;6:6.

    PubMed  PubMed Central  Google Scholar 

  65. Carette X, Platig J, Young DC, Helmel M, Young AT, Wang Z, et al. Multisystem analysis of Mycobacterium tuberculosis reveals kinase-dependent remodeling of the pathogen-environment interface. MBio. 2018;9:e02333–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Calder B, Albeldas C, Blackburn JM, Soares NC. Mass spectrometry offers insight into the role of Ser/Thr/Tyr phosphorylation in the Mycobacteria. Front Microbiol. 2016;7:32.

    Google Scholar 

  67. Kusebauch U, Ortega C, Ollodart A, Rogers RS, Sherman DR, Moritz RL, et al. Mycobacterium tuberculosis supports protein tyrosine phosphorylation. Proc Natl Acad Sci USA. 2014;111:9265–70.

    CAS  PubMed  Google Scholar 

  68. Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 2005;19:1692–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nagarajan SN, Upadhyay S, Chawla Y, Khan S, Naz S, Subramanian J, et al. Protein kinase A (PknA) of Mycobacterium tuberculosis is independently activated and is critical for growth in vitro and survival of the pathogen in the host. J Biol Chem. 2015;290:9626–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Singh A, Singh A, Singh Y, Pine R, Pine R, Shi L, et al. Protein kinase I of Mycobacterium tuberculosis: cellular localization and expression during infection of macrophage-like cells. Tuberculosis. 2006;86:28–33.

    CAS  PubMed  Google Scholar 

  71. Boutte CC, Baer CE, Papavinasasundaram K, Liu W, Chase MR, Meniche X, et al. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. eLife. 2016;5:a021113.

    Google Scholar 

  72. Turapov O, Forti F, Kadhim B, Ghisotti D, Sassine J, Straatman-Iwanowska A, et al. Two faces of CwlM, an essential PknB substrate, in Mycobacterium tuberculosis. Cell Rep. 2018;25:57–67.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Plocinski P, Arora N, Sarva K, Blaszczyk E, Qin H, Das N, et al. Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination. J Bacteriol. 2012;194:6398–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gee CL, Papavinasasundaram KG, Blair SR, Baer CE, Falick AM, King DS, et al. A phosphorylated pseudokinase complex controls cell wall synthesis in Mycobacteria. Sci Signal. 2012;5:ra7.

    PubMed  PubMed Central  Google Scholar 

  75. Roumestand C, Leiba J, Galophe N, Margeat E, Padilla A, Bessin Y, et al. Structural insight into the Mycobacterium tuberculosis Rv0020c protein and its interaction with the PknB kinase. Structure. 2011;19:1525–34.

    CAS  PubMed  Google Scholar 

  76. Gil M, Lima A, Rivera B, Rossello J, Urdániz E, Cascioferro A, et al. New substrates and interactors of the mycobacterial Serine/Threonine protein kinase PknG identified by a tailored interactomic approach. J Proteom. 2019;192:321–33.

    CAS  Google Scholar 

  77. Parikh A, Verma SK, Khan S, Prakash B, Nandicoori VK. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol. 2009;386:451–64.

    CAS  PubMed  Google Scholar 

  78. Kieser KJ, Boutte CC, Kester JC, Baer CE, Barczak AK, Meniche X, et al. Phosphorylation of the peptidoglycan synthase PonA1 governs the rate of polar elongation in mycobacteria. PLoS Pathog. 2015;11:e1005010.

    PubMed  PubMed Central  Google Scholar 

  79. Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, et al. Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol. 2009;74:724–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Thakur M, Chakraborti PK. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem. 2006;281:40107–13.

    CAS  PubMed  Google Scholar 

  81. Kang CM, Nyayapathy S, Lee JY, Suh JW, Husson RN. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology. 2008;154:725–35.

    CAS  PubMed  Google Scholar 

  82. Jani C, Eoh H, Lee JJ, Hamasha K, Sahana MB, Han J-S, et al. Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiol. 2010;10:327.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Plocinska R, Martinez L, Gorla P, Pandeeti E, Sarva K, Blaszczyk E, et al. Mycobacterium tuberculosis MtrB sensor kinase interactions with FtsI and Wag31 proteins reveal a role for MtrB distinct from that regulating MtrA activities. J Bacteriol. 2014;196:4120–9.

    PubMed  PubMed Central  Google Scholar 

  84. Hempel AM, Cantlay S, Molle V, Wang S-B, Naldrett MJ, Parker JL, et al. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc Natl Acad Sci USA. 2012;109:E2371–E2379.

    CAS  PubMed  Google Scholar 

  85. Novaková L, Bezousková S, Pompach P, Spidlová P, Sasková L, Weiser J, et al. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol. 2010;192:3629–38.

    PubMed  PubMed Central  Google Scholar 

  86. Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cléon I, et al. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol. 2012;83:746–58.

    CAS  PubMed  Google Scholar 

  87. Saalbach G, Hempel AM, Vigouroux M, Flärdh K, Buttner MJ, Naldrett MJ. Determination of phosphorylation sites in the DivIVA cytoskeletal protein of Streptomyces coelicolor by targeted LC-MS/MS. J Proteome Res. 2013;12:4187–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, et al. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2007;104:12151–6.

    CAS  PubMed  Google Scholar 

  89. Lisa M-N, Gil M, André-Leroux G, Barilone N, Durán R, Biondi RM, et al. Molecular basis of the activity and the regulation of the eukaryotic-like S/T protein kinase PknG from Mycobacterium tuberculosis. Structure. 2015;23:1–10.

    Google Scholar 

  90. Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, et al. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol. 2004;52:1691–702.

    CAS  PubMed  Google Scholar 

  91. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004;304:1800–4.

    CAS  PubMed  Google Scholar 

  92. van der Woude AD, Stoop EJM, Stiess M, Wang S, Ummels R, van Stempvoort G, et al. Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol. 2014;16:280–95.

    PubMed  Google Scholar 

  93. Khan MZ, Bhaskar A, Upadhyay S, Kumari P, Rajmani RS, Jain P, et al. Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions. J Biol Chem. 2017;292:16093–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Niebisch A, Kabus A, Schultz C, Weil B, Bott M. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem. 2006;281:12300–7.

    CAS  PubMed  Google Scholar 

  95. O’Hare HM, Durán R, Cerveñansky C, Bellinzoni M, Wehenkel AM, Pritsch O, et al. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol. 2008;70:1408–23.

    PubMed  Google Scholar 

  96. Nott TJ, Kelly G, Stach L, Li J, Westcott S, Patel D, et al. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal. 2009;2:ra12.

    PubMed  Google Scholar 

  97. Ventura M, Rieck B, Boldrin F, Degiacomi G, Bellinzoni M, Barilone N, et al. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol Microbiol. 2013;90:356–66.

    CAS  PubMed  Google Scholar 

  98. Rieck B, Degiacomi G, Zimmermann M, Cascioferro A, Boldrin F, Lazar-Adler NR, et al. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog. 2017;13:e1006399.

    PubMed  PubMed Central  Google Scholar 

  99. England P, Wehenkel A, Martins S, Hoos S, André-Leroux G, Villarino A, et al. The FHA-containing protein GarA acts as a phosphorylation-dependent molecular switch in mycobacterial signaling. FEBS Lett. 2009;583:301–7.

    CAS  PubMed  Google Scholar 

  100. Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, et al. Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure. 2009;17:568–78.

    CAS  PubMed  Google Scholar 

  101. Tian J, Bryk R, Itoh M, Suematsu M, Nathan C. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci USA. 2005;102:10670–5.

    CAS  PubMed  Google Scholar 

  102. de Carvalho LPS, Zhao H, Dickinson CE, Arango NM, Lima CD, Fischer SM, et al. Activity-based metabolomic profiling of enzymatic function: Identification of Rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase. Chem Biol. 2010;17:323–32.

    PubMed  PubMed Central  Google Scholar 

  103. Wagner T, Bellinzoni M, Wehenkel A, O’Hare HM, Alzari PM. Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem Biol. 2011;18:1011–20.

    CAS  PubMed  Google Scholar 

  104. Wagner T, Barilone N, Alzari PM, Bellinzoni M. A dual conformation of the post-decarboxylation intermediate is associated with distinct enzyme states in mycobacterial KGD (α-ketoglutarate decarboxylase). Biochem J. 2014;457:425–34.

    CAS  PubMed  Google Scholar 

  105. Balakrishnan A, Jordan F, Nathan CF. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase. J Biol Chem. 2013;288:21688–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tiwari D, Singh RK, Goswami K, Verma SK, Prakash B, Nandicoori VK. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem. 2009;284:27467–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wittwer M, Luo Q, Kaila VRI, Dames SA. Oxidative unfolding of the rubredoxin domain and the natively disordered N-terminal region regulate the catalytic activity of Mycobacterium tuberculosis protein kinase G. J Biol Chem. 2016;291:27062–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhattacharyya N, Nkumama IN, Newland-Smith Z, Lin L-Y, Yin W, Cullen RE, et al. An aspartate-specific solute-binding protein regulates protein kinase G activity to control glutamate metabolism in Mycobacteria. MBio. 2018;9:349.

    Google Scholar 

  109. Alber T. Signaling mechanisms of the Mycobacterium tuberculosis receptor Ser/Thr protein kinases. Curr Opin Struct Biol. 2009;19:650–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ruggiero A, Ruggiero A, De Simone P, De Simone P, Smaldone G, Smaldone G, et al. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Curr Protein Pept Sci. 2012;13:756–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chao JD, Wong D, Av-Gay Y. Microbial protein-tyrosine kinases. J Biol Chem. 2014;289:9463–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong D, Li W, Chao JD, Zhou P, Narula G, Tsui C, et al. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci Rep. 2017;8:155.

    Google Scholar 

Download references

Acknowledgements

We thank all colleagues from our laboratories and the former MM4TB Consortium for insightful discussions and advice.

Funding

This work was partially supported by grants from the Institut Pasteur (Paris), the Institut Pasteur de Montevideo, and the ANR [research contracts ANR-13-JSV8-0003-01, ANR-18-CE11-0017-01, and ANR-18-CE92-0003-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Alzari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellinzoni, M., Wehenkel, A.M., Durán, R. et al. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Genes Immun 20, 383–393 (2019). https://doi.org/10.1038/s41435-019-0069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-019-0069-9

This article is cited by

Search

Quick links