Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MALAT1: a therapeutic candidate for a broad spectrum of vascular and cardiorenal complications

Abstract

Cardiovascular and renal complications cover a wide array of diseases. The most commonly known overlapping complications include cardiac and renal fibrosis, cardiomyopathy, cardiac hypertrophy, hypertension, and cardiorenal failure. The known or reported causes for the abovementioned complications include injury, ischemia, infection, and metabolic stress. To date, various targets have been reported and investigated in detail that are considered to be the cause of these complications. In the past 5 years, the role of noncoding RNAs has emerged in the area of cardiovascular and renal research, especially in relation to metabolic stress. The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has shown immense promise among the long noncoding RNA targets for treating cardiorenal complications. In this review, we shed light on the role of MALAT1 as a primary and novel target in treating cardiovascular and renal diseases as a whole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol. 2005;95:8B–13B.

    CAS  PubMed  Google Scholar 

  2. Skvortsova VI, Platonova IA, Tvorogova TV, Volkovenko OV, Demidova LI, Ostrovtsev IV. The effects of hormones of the hypothalamo-hypophyseal-adrenal, renin-angiotensin, and thyroid hormone systems on the formation of dyscirculatory encephalopathy. Neurosci Behav Physiol. 2004;34:939–47.

    CAS  PubMed  Google Scholar 

  3. Hering D, Winklewski PJ. Autonomic nervous system in acute kidney injury. Clin Exp Pharm Physiol. 2017;44:162–71.

    CAS  Google Scholar 

  4. Fu Q, Cao L, Li H, Wang B, Li Z. Cardiorenal syndrome: pathophysiological mechanism, preclinical models, novel contributors and potential therapies. Chin Med J (Engl). 2014;127:3011–8.

    Google Scholar 

  5. Lekawanvijit S, Krum H. Cardiorenal syndrome: acute kidney injury secondary to cardiovascular disease and role of protein-bound uraemic toxins. J Physiol. 2014;592:3969–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajapakse NW, Nanayakkara S, Kaye DM. Pathogenesis and treatment of the cardiorenal syndrome: implications of L-arginine-nitric oxide pathway impairment. Pharm Ther. 2015;154:1–12.

    CAS  Google Scholar 

  7. Rubattu S, Mennuni S, Testa M, Mennuni M, Pierelli G, Pagliaro B, et al. Pathogenesis of chronic cardiorenal syndrome: is there a role for oxidative stress? Int J Mol Sci. 2013;14:23011–32.

    PubMed  PubMed Central  Google Scholar 

  8. Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015;26:2378–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    PubMed  Google Scholar 

  10. Fonarow GC, Corday E, Committee ASA. Overview of acutely decompensated congestive heart failure (ADHF): a report from the ADHERE registry. Heart Fail Rev. 2004;9:179–85.

    PubMed  Google Scholar 

  11. Heywood JT. The cardiorenal syndrome: lessons from the ADHERE database and treatment options. Heart Fail Rev. 2004;9:195–201.

    PubMed  Google Scholar 

  12. Yancy CW, Fonarow GC, ADHERE Scientific Advisory Committee. Quality of care and outcomes in acute decompensated heart failure: the ADHERE Registry. Curr Heart Fail Rep. 2004;1:121–8.

    PubMed  Google Scholar 

  13. Chowdhury EK, Langham RG, Ademi Z, Owen A, Krum H, Wing LM, et al. Rate of change in renal function and mortality in elderly treated hypertensive patients. Clin J Am Soc Nephrol. 2015;10:1154–61.

    PubMed  PubMed Central  Google Scholar 

  14. Yancy CW. Treatment with B-type natriuretic peptide for chronic decompensated heart failure: insights learned from the follow-up serial infusion of nesiritide (FUSION) trial. Heart Fail Rev. 2004;9:209–16.

    CAS  PubMed  Google Scholar 

  15. Yancy CW, Krum H, Massie BM, Silver MA, Stevenson LW, Cheng M, et al. Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the second follow-up serial infusions of nesiritide (FUSION II) trial. Circ Heart Fail. 2008;1:9–16.

    CAS  PubMed  Google Scholar 

  16. Uneda K, Tamura K, Wakui H, Azushima K, Haku S, Kobayashi R, et al. Comparison of direct renin inhibitor and angiotensin II receptor blocker on clinic and ambulatory blood pressure profiles in hypertension with chronic kidney disease. Clin Exp Hypertens. 2016;38:738–43.

    CAS  PubMed  Google Scholar 

  17. Kobayashi R, Tamura K, Wakui H, Ohsawa M, Azushima K, Haku S, et al. Effect of single-pill irbesartan/amlodipine combination-based therapy on clinic and home blood pressure profiles in hypertension with chronic kidney diseases. Clin Exp Hypertens. 2016;38:744–50.

    CAS  PubMed  Google Scholar 

  18. Asleh R, Snipelisky D, Hathcock M, Kremers W, Liu D, Batzler A, et al. Genomewide association study reveals novel genetic loci associated with change in renal function in heart transplant recipients. Clin Transplant. 2018;32:e13395.

    PubMed  Google Scholar 

  19. Denby L, Baker AH. Targeting non-coding RNA for the therapy of renal disease. Curr Opin Pharm. 2016;27:70–7.

    CAS  Google Scholar 

  20. Lorenzen JM, Thum T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol. 2016;12:360–73.

    CAS  PubMed  Google Scholar 

  21. Shang D, Zheng T, Zhang J, Tian Y, Liu Y. Profiling of mRNA and long non-coding RNA of urothelial cancer in recipients after renal transplantation. Tumour Biol. 2016;37:12673–84.

    CAS  PubMed  Google Scholar 

  22. Virzi GM, Clementi A, Brocca A, de Cal M, Ronco C. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes. J Nephrol. 2018;31:333–41.

    CAS  PubMed  Google Scholar 

  23. Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res. 2018;41:649–61.

    CAS  PubMed  Google Scholar 

  24. Chuppa S, Liang M, Liu P, Liu Y, Casati MC, Cowley AW, et al. MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in cardiorenal syndrome type 4. Kidney Int. 2018;93:375–89.

    CAS  PubMed  Google Scholar 

  25. Rana I, Velkoska E, Patel SK, Burrell LM, Charchar FJ. MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury. Am J Physiol Ren Physiol. 2015;309:F943–54.

    CAS  Google Scholar 

  26. Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One. 2011;6:e18671.

    PubMed  PubMed Central  Google Scholar 

  27. Lorenzen JM, Schauerte C, Kielstein JT, Hubner A, Martino F, Fiedler J, et al. Circulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury. Clin Chem. 2015;61:191–201.

    CAS  PubMed  Google Scholar 

  28. Wang F, Li L, Xu H, Liu Y, Yang C, Cowley AW Jr., et al. Characteristics of long non-coding RNAs in the brown Norway rat and alterations in the Dahl salt-sensitive rat. Sci Rep. 2014;4:7146.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Zhang L, Zhou ZQ, Ren YQ, Sun LN, Man YL, et al. Effects of long non-coding RNA LINC00963 on renal interstitial fibrosis and oxidative stress of rats with chronic renal failure via the foxo signaling pathway. Cell Physiol Biochem. 2018;46:815–28.

    CAS  PubMed  Google Scholar 

  30. Gomez J, Lorca R, Reguero JR, Martin M, Moris C, Alonso B, et al. Genetic variation at the long noncoding RNA H19 gene is associated with the risk of hypertrophic cardiomyopathy. Epigenomics. 2018;10:865–73.

    CAS  PubMed  Google Scholar 

  31. Wang YN, Shan K, Yao MD, Yao J, Wang JJ, Li X, et al. Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension. 2016;68:736–48.

    CAS  PubMed  Google Scholar 

  32. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol. 2011;8:968–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajaram V, Knezevich S, Bove KE, Perry A, Pfeifer JD. DNA sequence of the translocation breakpoints in undifferentiated embryonal sarcoma arising in mesenchymal hamartoma of the liver harboring the t(11;19)(q11;q13.4) translocation. Genes Chromosom Cancer. 2007;46:508–13.

    CAS  PubMed  Google Scholar 

  36. Gutschner T, Hammerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91:791–801.

    CAS  Google Scholar 

  37. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.

    CAS  PubMed  Google Scholar 

  38. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

    PubMed  Google Scholar 

  39. Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ, et al. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genom. 2009;10:163.

    Google Scholar 

  40. Xu C, Yang M, Tian J, Wang X, Li Z. MALAT-1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis. Int J Oncol. 2011;39:169–75.

    PubMed  Google Scholar 

  41. Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res. 2011;21:1944–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lelli A, Nolan KA, Santambrogio S, Goncalves AF, Schonenberger MJ, Guinot A, et al. Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia (Auckl). 2015;3:45–52.

    Google Scholar 

  43. Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114:1389–97.

    CAS  PubMed  Google Scholar 

  44. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med. 2015;19:1418–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li X, Zeng L, Cao C, Lu C, Lian W, Han J, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res. 2017;350:327–35.

    CAS  PubMed  Google Scholar 

  46. Song Y, Yang L, Guo R, Lu N, Shi Y, Wang X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem Biophys Res Commun. 2019;509:359–66.

    CAS  PubMed  Google Scholar 

  47. Li Y, Ren D, Xu G. Long noncoding RNA MALAT1 mediates high glucose-induced glomerular endothelial cell injury by epigenetically inhibiting klotho via methyltransferase G9a. IUBMB Life. 2019;71:873–81.

    CAS  PubMed  Google Scholar 

  48. Eissmann M, Gutschner T, Hammerle M, Gunther S, Caudron-Herger M, Gross M, et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 2012;9:1076–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa S, Ip JY, Shioi G, Tripathi V, Zong X, Hirose T, et al. Malat1 is not an essential component of nuclear speckles in mice. RNA. 2012;18:1487–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci. 2017;37:1797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cremer S, Michalik KM, Fischer A, Pfisterer L, Jae N, Winter C, et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation. 2019;139:1320–34.

    CAS  PubMed  Google Scholar 

  52. Kolling M, Genschel C, Kaucsar T, Hubner A, Rong S, Schmitt R, et al. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury. Sci Rep. 2018;8:3438.

    PubMed  PubMed Central  Google Scholar 

  53. Yu SY, Dong B, Tang L, Zhou SH. LncRNA MALAT1 sponges miR-133 to promote NLRP3 inflammasome expression in ischemia-reperfusion injured heart. Int J Cardiol. 2018;254:50.

    PubMed  Google Scholar 

  54. Chen H, Wang X, Yan X, Cheng X, He X, Zheng W. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFkappaB. Int Immunopharmacol. 2018;55:69–76.

    CAS  PubMed  Google Scholar 

  55. Huang S, Zhang L, Song J, Wang Z, Huang X, Guo Z, et al. Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model. J Cell Physiol. 2019;234:2997–3006.

    CAS  PubMed  Google Scholar 

  56. Xiang Y, Zhang Y, Tang Y, Li Q. MALAT1 modulates TGF-beta1-induced endothelial-to-mesenchymal transition through downregulation of miR-145. Cell Physiol Biochem. 2017;42:357–72.

    CAS  PubMed  Google Scholar 

  57. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sinclair A, Islam S, Jones S. Gene therapy: an overview of approved and pipeline technologies. In: CADTH issues in emerging health technologies. Ottawa, ON; 2016. p. 1–23. https://www.ncbi.nlm.nih.gov/books/NBK378971/.

  59. Hoy SM. Patisiran: first global approval. Drugs. 2018;78:1625–31.

    CAS  PubMed  Google Scholar 

  60. Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.

Download references

Acknowledgements

PP is supported by Research Start Up Funds from the Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL.

Author information

Authors and Affiliations

Authors

Contributions

PP conceived the idea, wrote, and edited the manuscript. The figures were also created by PP. TG and JL wrote and edited the manuscript.

Corresponding author

Correspondence to Prasanth Puthanveetil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puthanveetil, P., Gutschner, T. & Lorenzen, J. MALAT1: a therapeutic candidate for a broad spectrum of vascular and cardiorenal complications. Hypertens Res 43, 372–379 (2020). https://doi.org/10.1038/s41440-019-0378-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0378-4

Keywords

Search

Quick links