Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic imprinting mediates dosage compensation in a young plant XY system

Abstract

Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2,3,4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normalized difference (Δ) in allelic expression levels between S. latifolia and the outgroup without sex chromosomes S. vulgaris, in autosomal and sex-linked contigs for the seedling tissue.
Fig. 2: Normalized expression difference between maternal and paternal alleles in S. latifolia females in autosomal and sex-linked SNPs in the seedling tissue.

Similar content being viewed by others

References

  1. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Mank, J. E. Sex chromosome dosage compensation: definitely not for everyone. Trends Genet. 29, 677–683 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Gu, L, & Walters, J. Evolution of sex chromosome dosage compensation in animals: a beautiful theory, undermined by facts and bedeviled by details. Genome Biol. Evol. 9, 2461–2476 (2017).).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Muyle, A., Shearn, R. & Marais, G. A. The evolution of sex chromosomes and dosage compensation in plants. Genome Biol. Evol. 9, 627–645 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ohno, S. Sex Chromosomes and Sex-Linked Genes (Springer: Berlin, 1967).

  7. Kuroda, M. I., Hilfiker, A. & Lucchesi, J. C. Dosage compensation in Drosophila—a model for the coordinate regulation of transcription. Genetics 204, 435–450 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Albritton, S. E. et al. Sex-biased gene expression and evolution of the X chromosome in nematodes. Genetics 197, 865–883 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ercan, S. Mechanisms of X chromosome dosage compensation. J. Genomics 3, 1–19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pessia, E., Engelstädter, J. & Marais, G. A. B. The evolution of X chromosome inactivation in mammals: the demise of Ohno’s hypothesis? Cell. Mol. Life Sci. 71, 1383–1394 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Disteche, C. M. Dosage compensation of the sex chromosomes. Annu. Rev. Genet. 46, 537–560 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Julien, P. et al. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol. 10, e1001328 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A. & Marais, G. A. B. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc. Natl Acad. Sci. USA. 109, 5346–5351 (2012).

    Article  PubMed  Google Scholar 

  14. Whitworth, D. J. & Pask, A. J. The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials. Semin. Cell Dev. Biol. 56, 117–121 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Wagschal, A. & Feil, R. Genomic imprinting in the placenta. Cytogenet. Genome Res. 113, 90–98 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. Patten, M. M. et al. The evolution of genomic imprinting: theories, predictions and empirical tests. Heredity 113, 119–128 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rautenberg, A., Hathaway, L., Oxelman, B. & Prentice, H. C. Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 57, 978–991 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. Chibalina, M. V. & Filatov, D. A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 21, 1475–1479 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Bergero, R. & Charlesworth, D. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr. Biol. 21, 1470–1474 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Muyle, A. et al. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol. 10, e1001308 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kazama, Y. et al. SlWUS1; an X-linked gene having no homologous Y-linked copy in Silene latifolia. G3 (Bethesda) 2, 1269–1278 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  22. Bergero, R, Qui, S, & Charlesworth, D. Gene loss from a plant sex chromosome system. Curr. Biol. 25, 1234–1240 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Papadopulos, A. S. T., Chester, M., Ridout, K. & Filatov, D. A. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl Acad. Sci. USA. 112, 13021–13026 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Muyle, A. et al. SEX-DETector: a probabilistic approach to study sex chromosomes in non-model organisms. Genome Biol. Evol. 8, 2530–2543 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Malone, J. H. et al. Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biol. 13, r28 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Veitia, R. A., Veyrunes, F., Bottani, S. & Birchler, J. A. X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. J. Mol. Cell Biol. 7, 2–11 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Siroky, J., Castiglione, M. R., & Vyskot, B. DNA methylation patterns of Melandrium album chromosomes. Chromosome Res. 6, 441–446 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 26, 873–881 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zemp, N. et al. Evolution of sex-biased gene expression in a dioecious plant. Nat. Plants 2, 16168 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported through ANR grant ANR-14-CE19-0021-01 to G.A.B.M, SNSF grant 160123 to A.W. and Czech Science Agency grant 16-08698S to R.H. We thank the EMBL Genomics Core Facility (EMBL, Heidelberg) for Y-chromosome sequencing. We thank B. Gaut, T. Giraud and J. Mank for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.M., N.Z., A.W. and G.A.B.M. conceived the study and experimental design. N.Z. and A.W. prepared and sequenced the plant material. A.M. ran SEX-DETector on the RNA-seq datasets for the three tissues, analysed the data, prepared tables and figures, and wrote the Supplementary Information with input from the other authors. N.Z. generated the X-chromosome genetic map. R.C., J.V. and R.H. did the Y-chromosome flow cytometry sorting and sequencing. C.D. did the first assembly of the sorted Y chromosome and improved it with RNA-seq data with the help of C.F. A.M. did the blasts to validate the inferences of SEX-DETector. R.T. did the GO term analysis. A.M. and F.P. did the statistical analyses of the data. G.A.B.M. and A.M. wrote the main text of the manuscript with input from the other authors.

Corresponding author

Correspondence to Aline Muyle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Text, Supplementary References, Supplementary Figures 1–16, and Supplementary Tables 1 and 3.

Reporting Summary

Supplementary Table 2

Mapping statistics. Library sizes (number of reads) and percentage of mapped reads of each individual.

Supplementary Table 4

Known sex-linked genes in S. latifolia. Gene names, transcripts and associated literature references are listed.

Supplementary Table 5

GO-terms and expression levels of seedling sex-linked transcripts. For each sex-linked transcript in seedlings, the mean Y over X expression ratio in males is given followed by the mean male over female expression, the mean paternal allele expression in females, the mean maternal allele expression in females and in males, the mean Y allele expression and the mean outgroup expression (S. vulgaris). This is followed by GO analysis output: number of hits, GO names, Enzyme names and InterPro GO names.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muyle, A., Zemp, N., Fruchard, C. et al. Genomic imprinting mediates dosage compensation in a young plant XY system. Nature Plants 4, 677–680 (2018). https://doi.org/10.1038/s41477-018-0221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0221-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing