Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors

Abstract

Decoding wound signalling in plants is critical for understanding various aspects of plant sciences, from pest resistance to secondary metabolite and phytohormone biosynthesis. The plant defence responses are known to primarily involve NADPH-oxidase-mediated H2O2 and Ca2+ signalling pathways, which propagate across long distances through the plant vasculature and tissues. Using non-destructive optical nanosensors, we find that the H2O2 concentration profile post-wounding follows a logistic waveform for six plant species: lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex acetosa) and Arabidopsis thaliana, ranked in order of wave speed from 0.44 to 3.10 cm min−1. The H2O2 wave tracks the concomitant surface potential wave measured electrochemically. We show that the plant RbohD glutamate-receptor-like channels (GLR3.3 and GLR3.6) are all critical to the propagation of the wound-induced H2O2 wave. Our findings highlight the utility of a new type of nanosensor probe that is species-independent and capable of real-time, spatial and temporal biochemical measurements in plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensor design and characterization of G-SWNTs and A-SWNTs.
Fig. 2: Standoff detection of the wound-induced H2O2 signal in plants.
Fig. 3: RbohD, GLR3.3 and GLR3.6 support the propagation of the wound-induced H2O2 wave in leaf tissues of A.thaliana.
Fig. 4: Sensor specificity to wounding to investigate H2O2 transport rate.
Fig. 5: Application of SWNT nanosensors to elucidate the H2O2 signalling mechanism in different plant species.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and any raw data can be obtained from the corresponding author on request.

References

  1. Kollist, H. et al. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci. 24, 25–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Fujita, M. et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442 (2006).

    Article  PubMed  Google Scholar 

  3. Savatin, D. V., Gramegna, G., Modesti, V. & Cervone, F. Wounding in the plant tissue: the defense of a dangerous passage. Front. Plant Sci. 5, 470 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hedrich, R., Salvador-Recatalà, V. & Dreyer, I. Electrical wiring and long-distance plant communication. Trends Plant Sci. 21, 376–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Spoel, S. H. & Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12, 89–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kiep, V. et al. Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. N. Phytol. 207, 996–1004 (2015).

    Article  CAS  Google Scholar 

  7. Spoel, S. H. & Dong, X. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3, 348–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C. & Grant, M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl Acad. Sci. USA 104, 1075–1080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S. & Farmer, E. E. Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500, 422–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Toyota, M. et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112–1115 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen, C. T., Kurenda, A., Stolz, S., Chételat, A. & Farmer, E. E. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc. Natl Acad. Sci. USA 115, 10178–10183 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mittler, R. et al. ROS signaling: the new wave? Trends Plant Sci. 16, 300–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Gilroy, S. et al. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19, 623–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Steinhorst, L. & Kudla, J. Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol. 163, 471–485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141, 312–322 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Smirnoff, N. & Arnaud, D. Hydrogen peroxide metabolism and functions in plants. N. Phytol. 221, 1197–1214 (2019).

    Article  CAS  Google Scholar 

  20. Mignolet-Spruyt, L. et al. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67, 3831–3844 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Sewelam, N., Kazan, K. & Schenk, P. M. Global plant stress signaling: reactive oxygen species at the cross-road. Front. Plant Sci. 7, 187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miller, G. et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2, ra45 (2009).

    PubMed  Google Scholar 

  23. Choi, W. G. et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 90, 698–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bienert, G. P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Vestergaard, C. L., Flyvbjerg, H. & Møller, I. M. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells? Front. Plant Sci. 3, 295 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petrov, V. D. & Van Breusegem, F. Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants 12, pls014 (2012).

    Google Scholar 

  27. Van Breusegem, F., Bailey-Serres, J. & Mittler, R. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147, 978–984 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Orozco-Cardenas, M. & Ryan, C. A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl Acad. Sci. USA 96, 6553–6557 (2002).

    Article  Google Scholar 

  29. Mullineaux, P. M. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol. 141, 346–350 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fichman, Y., Miller, G. & Mittler, R. Whole-plant live imaging of reactive oxygen species. Mol. Plant 12, 1203–1210 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840, 730–738 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Šnyrychová, I., Ayaydin, F. & Hideg, É. Detecting hydrogen peroxide in leaves in vivo - a comparison of methods. Physiol. Plant. 135, 1–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y.-H., Offler, C. E. & Ruan, Y.-L. A simple, rapid, and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing. Front. Plant Sci. 5, 745 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Halliwell, B. & Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 142, 231–255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Exposito-Rodriguez, M., Laissue, P. P., Yvon-Durocher, G., Smirnoff, N. & Mullineaux, P. M. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat. Commun. 8, 49 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nietzel, T. et al. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. N. Phytol. 221, 1649–1664 (2019).

    Article  CAS  Google Scholar 

  37. Exposito-Rodriguez, M., Laissue, P. P., Littlejohn, G. R., Smirnoff, N. & Mullineaux, P. M. The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants. Methods Enzymol. 527, 185–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Wong, M. H. et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 16, 264–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lew, T. T. S., Koman, V. B., Gordiichuk, P., Park, M. & Strano, M. S. The emergence of plant nanobionics and living plants as technology. Adv. Mater. Tech. 5, 1900657 (2019).

    Article  CAS  Google Scholar 

  41. Zhang, J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwak, S.-Y. et al. Nanosensor technology applied to living plant systems. Annu. Rev. Anal. Chem. 10, 113–140 (2017).

    Article  Google Scholar 

  43. Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, 1802086 (2018).

    Article  CAS  Google Scholar 

  46. Song, C., Pehrsson, P. E. & Zhao, W. Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109, 21634–21639 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kruss, S. et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136, 713–724 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, J. L., Wang, L. C., Chang, C. Y. & Liu, T. Y. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ. Mol. Mutagen. 33, 194–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Reth, M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 3, 1129–1134 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Jin, H. et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 5, 302–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koo, A. J. K., Gao, X., Daniel Jones, A. & Howe, G. A. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 59, 974–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki, N. et al. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25, 3553–3569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ogasawara, Y. et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283, 8885–8892 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Kadota, Y., Shirasu, K. & Zipfel, C. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56, 1472–1480 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Zimmermann, M. R., Maischak, H., Mithofer, A., Boland, W. & Felle, H. H. System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol. 149, 1593–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao, D. J., Wang, Z. Y., Huang, L., Jia, Y. P. & Leng, J. Q. Spatiotemporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array. Sci. Rep. 4, 5435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glauser, G. et al. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem. 284, 34506–34513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chauvin, A., Caldelari, D., Wolfender, J. L. & Farmer, E. E. Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. N. Phytol. 197, 566–575 (2013).

    Article  CAS  Google Scholar 

  60. Monshausen, G. B., Bibikova, T. N., Weisenseel, M. H. & Gilroy, S. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell Online 21, 2341–2356 (2009).

    Article  CAS  Google Scholar 

  61. Szechyńska-Hebda, M., Lewandowska, M. & Karpiński, S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol. 8, 684 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ani Akpinar, B., Avsar, B., Lucas, S. J. & Budak, H. Plant abiotic stress signaling. Plant Signal. Behav. 7, 1450–1455 (2012).

    Article  PubMed  CAS  Google Scholar 

  63. Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Held, G. Introduction to Light Emitting Diode Technology and Applications (CRC, 2016).

  65. Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Zubkovs, V. et al. Spinning-disc confocal microscopy in the second near-infrared window (NIR-II). Sci. Rep. 8, 13770 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Khodakovskaya, M. V. et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl Acad. Sci. USA 108, 1028–1033 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Meng, Q., Yin, J., Jin, M. & Gao, H. Distinct nitrite and nitric oxide physiologies in Escherichia coli and Shewanella oneidensis. Appl. Environ. Microbiol. 84, e00559-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Robinson, K. M. & Beckman, J. S. Synthesis of peroxynitrite from nitrite and hydrogen peroxide. Methods Enzymol. 396, 207–214 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Farmer for atglr3.3 atglr3.6 seeds. This research was supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program. The Disruptive & Sustainable Technology for Agricultural Precision (DiSTAP) is an interdisciplinary research group of the Singapore MIT Alliance for Research and Technology (SMART) Centre. T.T.S.L. was supported on a graduate fellowship by the Agency of Science, Research and Technology, Singapore. K.S.S. was supported by the Department of Energy Computational Science Graduate Fellowship program under grant DE-FG02-97ER25308. M.P. is grateful for the support of the Samsung scholarship.

Author information

Authors and Affiliations

Authors

Contributions

T.T.S.L., N.-H.C. and M.S.S. conceived the project, designed the study and wrote the manuscript. T.T.S.L. performed the majority of experiments and data analysis. J.S.S. provided A.thaliana mutants and helped with result discussions. V.B.K. performed the electrical signal measurements. K.S.S. assisted with the numerical simulation. P.G. performed AFM analysis. S.-Y.K., M.P., M.C.-Y.A., K.D.T., M.A.L. and M.B.C.-P. assisted with the experimental design and discussions. All authors have revised the manuscript and given their approval of the final version.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–18, Supplementary Discussion, Supplementary Table 1 and Supplementary Video legends.

Reporting Summary

Supplementary Video 1

False-coloured video of nanosensors’ response towards wounding in a spinach leaf.

Supplementary Video 2

Real-time response of nanosensors upon insect feeding on a spinach leaf.

Supplementary Video 3

Spatiotemporal profile of G- SWNT sensor response due to wounding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lew, T.T.S., Koman, V.B., Silmore, K.S. et al. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat. Plants 6, 404–415 (2020). https://doi.org/10.1038/s41477-020-0632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0632-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research