Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain

A Publisher Correction to this article was published on 02 November 2020

This article has been updated

Abstract

Efforts to scale neuroimaging towards the direct visualization of mammalian brain-wide neuronal activity have faced major challenges. Although high-resolution optical imaging of the whole brain in small animals has been achieved ex vivo, the real-time and direct monitoring of large-scale neuronal activity remains difficult, owing to the performance gap between localized, largely invasive, optical microscopy of rapid, cellular-resolved neuronal activity and whole-brain macroscopy of slow haemodynamics and metabolism. Here, we demonstrate both ex vivo and non-invasive in vivo functional optoacoustic (OA) neuroimaging of mice expressing the genetically encoded calcium indicator GCaMP6f. The approach offers rapid, high-resolution three-dimensional snapshots of whole-brain neuronal activity maps using single OA excitations, and of stimulus-evoked slow haemodynamics and fast calcium activity in the presence of strong haemoglobin background absorption. By providing direct neuroimaging at depths and spatiotemporal resolutions superior to optical fluorescence imaging, functional OA neuroimaging bridges the gap between functional microscopy and whole-brain macroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bi-modal OA and fluorescence imaging of isolated brains.
Fig. 2: Whole-brain volumetric OA imaging of neuronal activation in the isolated brain model.
Fig. 3: Non-invasive imaging of the GCaMP6f brain in vivo.
Fig. 4: Non-invasive imaging of somatosensory-evoked rapid calcium transients in the GCaMP6f brain in vivo.
Fig. 5: Comparison of GCaMP6f and GCaMP6s responses to electrical stimulation of the right or left hind paw.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. All datasets generated during this study are available from the corresponding authors.

Code availability

All custom code generated for this study can be obtained from the corresponding authors on reasonable request.

Change history

  • 02 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Hilgetag, C. C. & Amunts, K. Connectivity and cortical architecture. eNeuroforum 7, 56–63 (2016).

    Google Scholar 

  2. Peron, S., Chen, T. W. & Svoboda, K. Comprehensive imaging of cortical networks. Curr. Opin. Neurobiol. 32, 115–123 (2015).

    Article  CAS  Google Scholar 

  3. Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photon. 8, 448–454 (2014).

    Article  CAS  Google Scholar 

  4. Errico, C. et al. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler. NeuroImage 124, 752–761 (2016).

    Article  Google Scholar 

  5. Schulz, K. et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9, 597–602 (2012).

    Article  CAS  Google Scholar 

  6. Looger, L. L. & Griesbeck, O. Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 22, 18–23 (2012).

    Article  CAS  Google Scholar 

  7. Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017).

    Article  CAS  Google Scholar 

  8. Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat. Photon. 9, 113–119 (2015).

    Article  CAS  Google Scholar 

  9. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    Article  CAS  Google Scholar 

  10. Prevedel, R. et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nat. Methods 13, 1021–1028 (2016).

    Article  CAS  Google Scholar 

  11. Dean-Ben, X. L. et al. Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci. Appl. 5, e16201 (2016).

    Article  CAS  Google Scholar 

  12. Gottschalk, S., Fehm, T. F., Dean-Ben, X. L., Tsytsarev, V. & Razansky, D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4, 011007 (2017).

    Article  Google Scholar 

  13. Tang, J., Coleman, J. E., Dai, X. & Jiang, H. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. Sci. Rep. 6, 25470 (2016).

    Article  CAS  Google Scholar 

  14. Dean-Ben, X. L., Gottschalk, S., Sela, G., Shoham, S. & Razansky, D. Functional optoacoustic neuro-tomography of calcium fluxes in adult zebrafish brain in vivo. Opt. Lett. 42, 959–962 (2017).

    Article  CAS  Google Scholar 

  15. Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).

    Article  CAS  Google Scholar 

  16. Ermolayev, V., Dean-Ben, X. L., Mandal, S., Ntziachristos, V. & Razansky, D. Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography. Eur. Radiol. 26, 1843–1851 (2016).

    Article  Google Scholar 

  17. Gottschalk, S., Fehm, T. F., Dean-Ben, X. L. & Razansky, D. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J. Cereb. Blood Flow Metab. 35, 531–535 (2015).

    Article  Google Scholar 

  18. Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. New Engl. J. Med. 376, 1292–1294 (2017).

    Article  Google Scholar 

  19. Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).

    Article  CAS  Google Scholar 

  20. Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015).

    Article  CAS  Google Scholar 

  21. Schmued, L., Kyriakidis, K. & Heimer, L. In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS. Brain Res. 526, 127–134 (1990).

    Article  CAS  Google Scholar 

  22. Bojak, I., Day, H. C. & Liley, D. T. Ketamine, propofol, and the EEG: a neural field analysis of HCN1-mediated interactions. Front. Comput. Neurosci. 7, 22 (2013).

    Article  Google Scholar 

  23. Dhir, A. Pentylenetetrazol (PTZ) kindling model of epilepsy.Curr. Protoc. Neurosci. 58, 9.37.1–9.37.12 (2012).

    Article  Google Scholar 

  24. Tang, J. et al. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats. J. Cereb. Blood Flow Metab. 35, 1224–1232 (2015).

    Article  CAS  Google Scholar 

  25. Durán-Riveroll, M. L. & Cembella, D. A. Guanidinium toxins and their interactions with voltage-gated sodium ion channels. Mar. Drugs 15, 303 (2017).

    Article  CAS  Google Scholar 

  26. Gottschalk, S. et al. Short and long-term phototoxicity in cells expressing genetic reporters under nanosecond laser exposure. Biomaterials 69, 38–44 (2015).

    Article  CAS  Google Scholar 

  27. Norup Nielsen, A. & Lauritzen, M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J. Physiol. 533, 773–785 (2001).

    Article  CAS  Google Scholar 

  28. Kozberg, M. G., Ma, Y., Shaik, M. A., Kim, S. H. & Hillman, E. M. Rapid postnatal expansion of neural networks occurs in an environment of altered neurovascular and neurometabolic coupling. J. Neurosci. 36, 6704–6717 (2016).

    Article  CAS  Google Scholar 

  29. Vanni, M. P. & Murphy, T. H. Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex. J. Neurosci. 34, 15931–15946 (2014).

    Article  CAS  Google Scholar 

  30. Schroeter, A., Grandjean, J., Schlegel, F., Saab, B. J. & Rudin, M. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation. J. Cereb. Blood Flow Metab. 37, 2368–2382 (2017).

    Article  Google Scholar 

  31. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  Google Scholar 

  32. O’Herron, P. et al. Neural correlates of single-vessel haemodynamic responses in vivo. Nature 534, 378–382 (2016).

    Article  CAS  Google Scholar 

  33. Razi, A. & Friston, K. J. The connected brain: causality, models, and intrinsic dynamics. IEEE Signal Process. Mag. 33, 14–35 (2016).

    Article  Google Scholar 

  34. Lefebvre, J., Castonguay, A., Pouliot, P., Descoteaux, M. & Lesage, F. Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI. Neurophotonics 4, 041501 (2017).

    Article  Google Scholar 

  35. Llinás, R. R., Leznik, E. & Urbano, F. J. Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc. Natl Acad. Sci. USA 99, 449–454 (2002).

    Article  CAS  Google Scholar 

  36. Kneipp, M. et al. Effects of the murine skull in optoacoustic brain microscopy. J. Biophotonics 9, 117–123 (2016).

    Article  CAS  Google Scholar 

  37. Sieu, L. A. et al. EEG and functional ultrasound imaging in mobile rats. Nat. Methods 12, 831–834 (2015).

    Article  CAS  Google Scholar 

  38. Badura, A., Sun, X. R., Giovannucci, A., Lynch, L. A. & Wang, S. S. Fast calcium sensor proteins for monitoring neural activity. Neurophotonics 1, 025008 (2014).

    Article  CAS  Google Scholar 

  39. Dana, H. et al. High-performance GFP-based calcium indicators for imaging activity in neuronal populations and microcompartments. Preprint at https://www.biorxiv.org/content/10.1101/434589v1 (2018).

  40. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  Google Scholar 

  41. Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator.Nat. Methods 16, 171–174 (2019).

    Article  CAS  Google Scholar 

  42. American National Standard for Safe Use of Lasers ANSI Z136.1 (Laser Institute of America, 2014).

  43. Dean-Ben, X. L., Ozbek, A. & Razansky, D. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging 32, 2050–2055 (2013).

    Article  Google Scholar 

  44. Wang, L. V. & Wu, H.-I. Biomedical Optics: Principles and Imaging (Wiley, 2007).

  45. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables Vol. 55 (Courer Corporation, 1964).

  46. Zarchan, P. & Musoff, H. Fundamentals of Kalman Filtering: A Practical Approach (American Institute of Aeronautics and Astronautics, 2000).

Download references

Acknowledgements

The authors acknowledge grant support from the European Research Council (under grant agreement ERC-2015-CoG-682379) and the US National Institutes of Health (grants R21-EY026382 and UF1-NS107680). We also acknowledge the help of N. Tritsch and L. Mcley with reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.G., O.D., B.M.L., M.A.H. and X.L.D.-B. performed the experiments. S.G., O.D., B.M.L., J.R., M.A.H. and X.L.D.-B. analysed and processed the data. S.G., X.L.D.-B., S.S. and D.R. validated the data analysis. S.G., S.S. and D.R. designed and supervised the study. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Shy Shoham or Daniel Razansky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and video captions.

Reporting Summary

Supplementary Video 1

OA calcium activity map in a single 2D slice located at an approximate depth of 1 mm in the mouse brain.

Supplementary Video 2

OA calcium activity in a single 2D slice located at an approximate depth of 0.5 mm in the mouse brain.

Supplementary Video 3

Haemodynamic responses across the entire mouse cortex in response to paw stimulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottschalk, S., Degtyaruk, O., Mc Larney, B. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat Biomed Eng 3, 392–401 (2019). https://doi.org/10.1038/s41551-019-0372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0372-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing