Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia

An Author Correction to this article was published on 24 May 2022

This article has been updated

Abstract

The functions of cilia—antenna-like organelles associated with a spectrum of disease states—are poorly understood, particularly in human cells. Here we show that human pluripotent stem cells (hPSCs) edited via CRISPR to knock out the kinesin-2 subunits KIF3A or KIF3B can be used to model ciliopathy phenotypes and to reveal ciliary functions at the tissue scale. KIF3A–/– and KIF3B–/– hPSCs lacked cilia, yet remained robustly self-renewing and pluripotent. Tissues and organoids derived from these hPSCs displayed phenotypes that recapitulated defective neurogenesis and nephrogenesis, polycystic kidney disease (PKD) and other features of the ciliopathy spectrum. We also show that human cilia mediate a critical switch in hedgehog signalling during organoid differentiation, and that they constitutively release extracellular vesicles containing signalling molecules associated with ciliopathy phenotypes. The capacity of KIF3A–/– and KIF3B–/– hPSCs to reveal endogenous mechanisms underlying complex ciliary phenotypes may facilitate the discovery of candidate therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A CRISPR gene-editing strategy produces stable hPSCs lacking cilia.
Fig. 2: Cilia are critical for efficient terminal differentiation in vivo.
Fig. 3: KIF3A–/– and KIF3B–/– kidney organoids express defects in neuronal and nephron differentiation.
Fig. 4: Modulation of hedgehog pathway activation via kinesin-2 promotes kidney organoid differentiation.
Fig. 5: Smoothened agonist perturbs organoid differentiation similar to ciliary ablation.
Fig. 6: Kinesin-2 knockout organoids express the PKD cystic phenotype.
Fig. 7: Kinesin-2 knockout hPSCs and organoids reveal EV secretion defects in disease-relevant signalling pathways.
Fig. 8: Ciliary function directs morphogenesis in complex tissues derived from hPSCs.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Complete RNA-seq data are available from the NCBI GEO repository under the accession code GSE196807. The raw and analysed datasets generated during the study are too large and complex to be publicly shared (numerous cell lines, replicates, images, blots and experiments, maintained and analysed in specialized file formats and with unique identifiers), yet they are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

Cellprofiler and RNA analysis pipelines are available on request from the corresponding author.

Change history

References

  1. Sedar, A. W. & Porter, K. R. The fine structure of cortical components of Paramecium multimicronucleatum. J. Biophys. Biochem Cytol. 1, 583–604 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orozco, J. T. et al. Movement of motor and cargo along cilia. Nature 398, 674 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. He, M., Agbu, S. & Anderson, K. V. Microtubule motors drive hedgehog signaling in primary cilia. Trends Cell Biol. 27, 110–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Otto, E. A. et al. Mutations in invs encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413–420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nachury, M. V. et al. A core complex of bbs proteins cooperates with the gtpase rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic bardet-biedl syndrome. Nature 425, 628–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S. et al. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat. Cell Biol. 13, 351–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rash, J. E., Shay, J. W. & Biesele, J. J. Cilia in cardiac differentiation. J. Ultrastruct. Res. 29, 470–484 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. Schraml, P. et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod. Pathol. 22, 31–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Wong, S. Y. et al. Primary cilia can both mediate and suppress hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the kif3a subunit of kinesin-ii. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking kif3b motor protein. Cell 95, 829–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Murcia, N. S. et al. The oak ridge polycystic kidney (orpk) disease gene is required for left-right axis determination. Development 127, 2347–2355 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, F. et al. Kidney-specific inactivation of the kif3a subunit of kinesin-ii inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chi, L. et al. Kif3a controls murine nephron number via gli3 repressor, cell survival, and gene expression in a lineage-specific manner. PLoS ONE 8, e65448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marszalek, J. R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-ii in mammalian photoreceptors. Cell 102, 175–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Moyer, J. H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Pazour, G. J. et al. The intraflagellar transport protein, ift88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157, 103–113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tammachote, R. et al. Ciliary and centrosomal defects associated with mutation and depletion of the meckel syndrome genes mks1 and mks3. Hum. Mol. Genet 18, 3311–3323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frank, V. et al. Mutations in nek8 link multiple organ dysplasia with altered hippo signalling and increased c-myc expression. Hum. Mol. Genet 22, 2177–2185 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kiprilov, E. N. et al. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J. Cell Biol. 180, 897–904 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freedman, B. S. et al. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with pkd1 mutations. J. Am. Soc. Nephrol. 24, 1571–1586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barabino, A. et al. Deregulation of neuro-developmental genes and primary cilium cytoskeleton anomalies in iPSC retinal sheets from human syndromic ciliopathies. Stem Cell Rep. 14, 357–373 (2020).

    Article  CAS  Google Scholar 

  30. Jinek, M. et al. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mali, P. et al. RNA-guided human genome engineering via cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Davidson, K. C. et al. Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by oct4. Proc. Natl Acad. Sci. USA 109, 4485–4490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical wnt/beta-catenin, activin/nodal and bmp signaling. Development 135, 2969–2979 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Cantagrel, V. et al. Mutations in the cilia gene arl13b lead to the classical form of joubert syndrome. Am. J. Hum. Genet. 83, 170–179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higginbotham, H. et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat. Neurosci. 16, 1000–1007 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Takasato, M. et al. Kidney organoids from human ips cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24, 670–682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells 35, 2366–2378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cruz, N. M. et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater. 16, 1112–1119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harder, J. L. et al. Organoid single-cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight 4, e122697 (2019).

    Article  PubMed Central  Google Scholar 

  46. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev. 10, 301–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Marigo, V. & Tabin, C. J. Regulation of patched by sonic hedgehog in the developing neural tube. Proc. Natl Acad. Sci. USA 93, 9346–9351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Corbit, K. C. et al. Vertebrate smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Pazour, G. J. et al. Chlamydomonas ift88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Phua, S. C. et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279 e215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nager, A. R. et al. An actin network dispatches ciliary gpcrs into extracellular vesicles to modulate signaling. Cell 168, 252–263.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Scholey, J. M. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29, 443–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Cogne, B. et al. Mutations in the kinesin-2 motor kif3b cause an autosomal-dominant ciliopathy. Am. J. Hum. Genet. 106, 893–904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glass, N. R. et al. Multivariate patterning of human pluripotent cells under perfusion reveals critical roles of induced paracrine factors in kidney organoid development. Sci. Adv. 6, eaaw2746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, H. et al. Comparative analysis and refinement of human psc-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Subramanian, A. et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat. Commun. 10, 5462 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. D’Cruz, R., Stronks, K., Rowan, C. J. & Rosenblum, N. D. Lineage-specific roles of hedgehog-gli signaling during mammalian kidney development. Pediatr. Nephrol. 35, 725–731 (2020).

    Article  PubMed  Google Scholar 

  61. Mak, S. K. et al. Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage. Stem Cells Int. 2012, 140427 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Shankland, J. Himmelfarb, H. Ruohola-Baker, C. Murry, D. Beier, D. Doherty, J. Scott and M. Bothwell (UW) for helpful discussions; C. Vishy, S. Qi and members of the Freedman and Fu laboratories for assistance with experiments. Studies were supported by an Institute for Stem Cell and Regenerative Medicine Innovation Pilot Award; Lara Nowak-Macklin Research Fund; NIH Awards R01DK117914 (B.S.F.), UG3TR003288 (J.H. and B.S.F.), UG3TR002158 (J.H.), UC2DK126006 (S.S. and B.S.F.), K25HL135432 (H.F.) and U01DK127553 (B.S.F.); the Northwest Kidney Centers; and start-up funds from the University of Washington. Figure 8a was created with Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

N.M.C., R.R., J.L.M.-F., C.T., H.F. and B.S.F. generated and characterized kinesin-2 knockout hPSCs and derived tissues. N.M.C., R.R., H.F. and B.S.F. designed the experiments. B.S.F. wrote the manuscript with revisions from all authors.

Corresponding author

Correspondence to Benjamin S. Freedman.

Ethics declarations

Competing interests

B.S.F. is an inventor on patents and patent applications for kidney organoid generation and disease modelling (US10815460B2, United States, 2020-10-27; US2021290632A1, United States, 2021-09-23). The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Maxence Nachury and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Kinesin-2 is dispensable for hPSC morphology and epiblast spheroid formation.

a, Confocal immunofluorescence images of acetylated a-tubulin (AcTub) and DNA in representative fields of undifferentiated control and KIF3A-/- hPSCs. Orthogonal (top) and volume (bottom) views are shown. b, Phase contrast images of representative control and KIF3A-/- epiblast spheroids. c, Quantification (mean ± s.e.m.) of lumen area as percentage of the spheroid area. d-e, Confocal sections showing immunofluorescence for pluripotency, polarity, and ciliary markers in spheroids. A midbody is seen in a KIF3A-/- spheroid (arrow), but not cilia. Scale bars, 25 µm.

Extended Data Fig. 2 Kinesin-2 knockout hPSCs establish a renewable source of diverse human cell types lacking cilia.

a, Neuroepithelial (AcTub), endodermal (α-fetoprotein, AFP), and mesodermal (smooth muscle α-actin, SMA) lineages in EBs. Zoom shows magnification of dashed boxed area with AcTub and DNA intensities increased for clarity. Scale bar, 50 µm. b, Images and c, quantification of pigmented EBs. Scale bar, 500 µm. Knockout (KO) represent pooled data from both KIF3A-/- and KIF3B-/- EBs (mean ± s.e.m., n ≥ 9 independent biological replicates per condition from a total of 8 distinct cell lines). d, Representative images and e, quantification of OCT4 and BRY immunofluorescence intensities in hPSCs after treatment with increasing doses of CHIR99021 in mTeSR1 for 48 hours. Each dot represents a single cell. Data are pooled from three separate experiments. bpp, bits per pixel (raw intensity). Scale bars, 50 µm.

Extended Data Fig. 3 Kinesin-2 knockout tumors exhibit differentiation defects.

a, Representative photographs of whole, unfixed growths retrieved from immunodeficient animals at the same time point. Growths are sliced through their centers to reveal the internal surface. b, A second set of tumors, photographed intact after retrieval from the animals. c-e, Quantification of tissue subtypes within teratomas as a fraction of total area (mean ± s.e.m., n ≥ 5 independent biological replicates per condition from a total of 14 distinct cell lines). f, Ratio of area occupied by SOX2+ cells in TUJ1+ patches of teratoma sections (mean ± s.e.m., n ≥ 4 independent biological replicates per condition from a total of 6 distinct cell lines; *, p = 0.0391).

Extended Data Fig. 4 Hedgehog switching is defective in kinesin-2 knockout organoid cultures.

a, Quantification of SOX2 + area per 96-well of kidney organoid cultures (mean ± s.e.m., n ≥ 3 independent biological replicates per condition from a total of 11 distinct cell lines). b, Wide-field immunofluorescence images of kidney organoid differentiations in a representative 96-well plate. The three left wells contain control cell lines and the three right wells contain KIF3A-/- cell lines. Zoom of boxed regions is shown below each of the wells. Each kidney organoid contains distal tubular (ECAD), proximal tubular (LTL), and podocyte (NPHS1) epithelial cells. Arrow indicates a cluster of ECAD+ cells without proximal tubule and podocyte segments. c, Heatmap of the expression level of genes differentially expressed as a combined function of KIF3A or KIF3B loss in hPSCs (FDR < 0.2). Gene names and labels at right refer to genes associated with enriched gene ontology processes as a function of KIF3B-/- loss in hPSCs in Fig. 4a. d, Representative GLI3 immunoblot of control, KIF3A-/-, and KIF3B-/- undifferentiated hPSCs, with e, band intensity quantification (mean ± s.e.m., n ≥ 3 independent biological replicates per condition from a total of 11 distinct cell lines). f, Band intensity quantification of the blot shown in Fig. 4e, comparing cultures on day 0 to day 18. g, Immunoblot of GLI3 in kidney organoid cultures on days 7, 11, and 18 of differentiation. 3A and 3B indicate KIF3A-/- and KIF3B-/- mutants, respectively. h, Schematic of organoid microdissection (left), with immunoblot of GLI3 on day 18 of differentiation in lysates of whole wells (w), microdissected organoids (o), or remnant stroma (s). i, GLI1 immunoblot of the samples shown in Fig. 4e, comparing cultures on day 0 to day 18.

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Peer Review File

Supplementary Video 1

KIF3B–/– cyst grown for several months in suspension culture and transferred into a 250 ml flask.

Supplementary Video 2

Volumetric reconstruction of the lower portion of a cyst derived from KIF3A–/– kidney organoids, showing proximal tubules (LTL, green) and dividing cells (pH3, red), with all nuclei labelled in blue (DAPI).

Source data

Source Data for Fig. 1

Unprocessed western blots.

Source Data for Fig. 4

Unprocessed western blots.

Source Data for Fig. 5

Unprocessed western blots.

Source Data for Fig. 7

Unprocessed western blots.

Source Data for Extended Data Fig. 4

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, N.M., Reddy, R., McFaline-Figueroa, J.L. et al. Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nat. Biomed. Eng 6, 463–475 (2022). https://doi.org/10.1038/s41551-022-00880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00880-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing