Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer

An Author Correction to this article was published on 24 February 2021

This article has been updated

Abstract

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute–solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120–200 cm−1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mixed-valence complex under study and experimental set-up.
Fig. 2: Fe Kβ XES tracks the MMCT excited-state population.
Fig. 3: The XSS signal.
Fig. 4: Difference scattering signals calculated from equilibrium MD simulations of the GS and MMCT state of FeRu in water.
Fig. 5: Non-equilibrium MD simulations describe the measured solvation dynamics.
Fig. 6: Results of non-equilibrium MD simulations.

Similar content being viewed by others

Data availability

The experimental data and the simulation results that support the findings of this study are available in Figshare with the identifier https://doi.org/10.6084/m9.figshare.13322975 (ref. 59).

Change history

References

  1. Marcus, R. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985).

    Article  CAS  Google Scholar 

  2. Rossky, P. J. & Simon, J. D. Dynamics of chemical processes in polar solvents. Nature 370, 263–269 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, P. & Meyer, T. J. Medium effects on charge transfer in metal complexes. Chem. Rev. 98, 1439–1478 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Carpenter, B. K., Harvey, J. N. & Orr-Ewing, A. J. The study of reactive intermediates in condensed phases. J. Am. Chem. Soc. 138, 4695–4705 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kumpulainen, T., Lang, B., Rosspeintner, A. & Vauthey, E. Ultrafast elementary photochemical processes of organic molecules in liquid solution. Chem. Rev. 117, 10826–10939 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Raineri, F. O. & Friedman, H. L. Solvent Control of Electron Transfer Reactions 81–189 (John Wiley & Sons, 2007).

  7. Barbara, P. F., Walker, G. C. & Smith, T. P. Vibrational modes and the dynamic solvent effect in electron and proton transfer. Science 256, 975–981 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 100, 13148–13168 (1996).

    Article  CAS  Google Scholar 

  9. Jimenez, R., Fleming, G. R., Kumar, P. V. & Maroncelli, M. Femtosecond solvation dynamics of water. Nature 369, 471–473 (1994).

    Article  CAS  Google Scholar 

  10. Hsu, C.-P., Song, X. & Marcus, R. A. Time-dependent Stokes shift and its calculation from solvent dielectric dispersion data. J. Phys. Chem. B 101, 2546–2551 (1997).

    Article  CAS  Google Scholar 

  11. de Boeij, W. P., Pshenichnikov, M. S. & Wiersma, D. A. Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies. Ann. Rev. Phys. Chem. 49, 99–123 (1998).

    Article  Google Scholar 

  12. Underwood, D. F. & Blank, D. A. Ultrafast solvation dynamics: a view from the solvent’s perspective using a novel resonant-pump, nonresonant-probe technique. J. Phys. Chem. A 107, 956–961 (2003).

    Article  CAS  Google Scholar 

  13. Petrone, A., Donati, G., Caruso, P. & Rega, N. Understanding THz and IR signals beneath time-resolved fluorescence from excited-state ab initio dynamics. J. Am. Chem. Soc. 136, 14866–14874 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Błasiak, B., Londergan, C. H., Webb, L. J. & Cho, M. Vibrational probes: from small molecule solvatochromism theory and experiments to applications in complex systems. Acc. Chem. Res. 50, 968–976 (2017).

    Article  PubMed  Google Scholar 

  15. Baiz, C. R. et al. Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction. Chem. Rev. 120, 7152–7218 (2020).

  16. Nibbering, E. T. J. & Elsaesser, T. Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem. Rev. 104, 1887–1914 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Kuharski, R. A. et al. Molecular model for aqueous ferrous–ferric electron transfer. J. Chem. Phys. 89, 3248–3257 (1988).

    Article  CAS  Google Scholar 

  19. Fonseca, T. & Ladanyi, B. M. Solvation dynamics in methanol: solute and perturbation dependence. J. Mol. Liq. 60, 1–24 (1994).

    Article  CAS  Google Scholar 

  20. Maroncelli, M. & Fleming, G. R. Computer simulation of the dynamics of aqueous solvation. J. Chem. Phys. 89, 5044–5069 (1988).

    Article  CAS  Google Scholar 

  21. Martini, I. B., Barthel, E. R. & Schwartz, B. J. Optical control of electrons during electron transfer. Science 293, 462–465 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, K. H. et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Biasin, E. et al. Femtosecond X-ray scattering study of ultrafast photoinduced structural dynamics in solvated [Co(terpy)2]2+. Phys. Rev. Lett. 117, 013002 (2016).

    Article  PubMed  Google Scholar 

  24. Haldrup, K. et al. Ultrafast X-ray scattering measurements of coherent structural dynamics on the ground-state potential energy surface of a diplatinum molecule. Phys. Rev. Lett. 122, 063001 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Kunnus, K. et al. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat. Commun. 11, 634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Driel, T. B. et al. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat. Commun. 7, 13678 (2016).

  27. Courtney, T. L., Fox, Z. W., Estergreen, L. & Khalil, M. Measuring coherently coupled intramolecular vibrational and charge-transfer dynamics with two-dimensional vibrational-electronic spectroscopy. J. Phys. Chem. Lett. 6, 1286–1292 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Reid, P. J., Silva, C., Barbara, P. F., Karki, L. & Hupp, J. T. Electronic coherence, vibrational coherence, and solvent degrees of freedom in the femtosecond spectroscopy of mixed-valence metal dimers in H2O and D2O. J. Phys. Chem. 99, 2609–2616 (1995).

    Article  CAS  Google Scholar 

  29. Wang, C., Mohney, B. K., Akhremitchev, B. B. & Walker, G. C. Ultrafast infrared spectroscopy of vibrational states prepared by photoinduced electron transfer in (CN)5FeCNRu(NH3)5-. J. Phys. Chem. A 104, 4314–4320 (2000).

    Article  CAS  Google Scholar 

  30. Son, D. H., Kambhampati, P., Kee, T. W. & Barbara, P. F. Femtosecond multicolor pump–probe study of ultrafast electron transfer of [(NH3)5RuiiiNCRuii(CN)5]- in aqueous solution. J. Phys. Chem. A 106, 4591–4597 (2002).

    Article  CAS  Google Scholar 

  31. Timpson, C. J., Bignozzi, C. A., Sullivan, B. P., Kober, E. M. & Meyer, T. J. Influence of solvent on the spectroscopic properties of cyano complexes of ruthenium(II). J. Phys. Chem. 100, 2915–2925 (1996).

    Article  CAS  Google Scholar 

  32. Lay, P. A., McAlpine, N. S., Hupp, J. T., Weaver, M. J. & Sargeson, A. M. Solvent-dependent redox thermodynamics of metal amine complexes. Delineation of specific solvation effects. Inorg. Chem. 29, 4322–4328 (1990).

    Article  CAS  Google Scholar 

  33. Wang, C. et al. Solvent control of vibronic coupling upon intervalence charge transfer excitation of (CN)5FeCNRu(NH3)5- as revealed by resonance Raman and near-infrared absorption spectroscopies. J. Am. Chem. Soc. 120, 5848–5849 (1998).

    Article  CAS  Google Scholar 

  34. Slenkamp, K. M. et al. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy. J. Chem. Phys. 140, 084505 (2014).

    Article  PubMed  Google Scholar 

  35. Curtis, J. C., Sullivan, B. P. & Meyer, T. J. Hydrogen-bonding-induced solvatochromism in the charge-transfer transitions of ruthenium(II) and ruthenium(III) ammine complexes. Inorg. Chem. 22, 224–236 (1983).

    Article  CAS  Google Scholar 

  36. Ross, M. et al. Comprehensive experimental and computational spectroscopic study of hexacyanoferrate complexes in water: from infrared to X-ray wavelengths. J. Phys. Chem. B 122, 5075–5086 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Kjær, K. S. et al. Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy. Chem. Sci. 10, 5749–5760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Glatzel, P. & Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005).

    Article  CAS  Google Scholar 

  39. Dohn, A. O. et al. On the calculation of X-ray scattering signals from pairwise radial distribution functions. J. Phys. B 48, 244010 (2015).

    Article  Google Scholar 

  40. Ihee, H. et al. Ultrafast X-ray diffraction of transient molecular structures in solution. Science 309, 1223–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kjær, K. S. et al. Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution. Phys. Chem. Chem. Phys. 15, 15003–15016 (2013).

    Article  PubMed  Google Scholar 

  42. Barthel, E. R., Martini, I. B. & Schwartz, B. J. How does the solvent control electron transfer? Experimental and theoretical studies of the simplest charge transfer reaction. J. Phys. Chem. B 105, 12230–12241 (2001).

    Article  CAS  Google Scholar 

  43. Aherne, D., Tran, V. & Schwartz, B. J. Nonlinear, nonpolar solvation dynamics in water: the roles of electrostriction and solvent translation in the breakdown of linear response. J. Phys. Chem. B 104, 5382–5394 (2000).

    Article  CAS  Google Scholar 

  44. Fonseca, T. & Ladanyi, B. M. Breakdown of linear response for solvation dynamics in methanol. J. Phys. Chem. 95, 2116–2119 (1991).

    Article  CAS  Google Scholar 

  45. Castner, E. W., Chang, Y. J., Chu, Y. C. & Walrafen, G. E. The intermolecular dynamics of liquid water. J. Chem. Phys. 102, 653–659 (1995).

    Article  CAS  Google Scholar 

  46. Bragg, A. E., Cavanagh, M. C. & Schwartz, B. J. Linear response breakdown in solvation dynamics induced by atomic electron-transfer reactions. Science 321, 1817–1822 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Chapman, C. F., Fee, R. S. & Maroncelli, M. Measurements of the solute dependence of solvation dynamics in 1-propanol: the role of specific hydrogen-bonding interactions. J. Phys. Chem. 99, 4811–4819 (1995).

    Article  CAS  Google Scholar 

  48. Sajadi, M., Weinberger, M., Wagenknecht, H.-A. & Ernsting, N. P. Polar solvation dynamics in water and methanol: search for molecularity. Phys. Chem. Chem. Phys. 13, 17768–17774 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Bellissent-Funel, M.-C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schirò, G. et al. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat. Commun. 6, 6490 (2015).

  51. Minitti, M. P. et al. Optical laser systems at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 526–531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Philipp, H. T., Hromalik, M., Tate, M., Koerner, L. & Gruner, S. M. Pixel array detector for X-ray free electron laser experiments. Nucl. Instrum. Methods Phys. Res. A 649, 67–69 (2011).

    Article  CAS  Google Scholar 

  53. Biasin, E. et al. Anisotropy enhanced X-ray scattering from solvated transition metal complexes. J. Synchrotron Radiat. 25, 306–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Silverstein, D. W., Govind, N., van Dam, H. J. & Jensen, L. Simulating one-photon absorption and resonance Raman scattering spectra using analytical excited state energy gradients within time-dependent density functional theory. J. Chem. Theory Comput. 9, 5490–5503 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  56. Aprà, E. et al. NWChem: past, present, and future. J. Chem. Phys. 152, 184102 (2020).

    Article  PubMed  Google Scholar 

  57. Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Jorgensen et al., W. L. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  Google Scholar 

  59. Biasin, E., Schoenlein, R. W., Govind, N. & Khalil, M. Time-resolved X-ray scattering and spectroscopy data and MD simulations reveal solvent motions coupled to intramolecular elecron transfer. Figshare https://doi.org/10.6084/m9.figshare.13322975 (2020).

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division under award nos DE-SC0012450 (Z.W.F., J.M.C., J.D.G., Y.Z., S.M. and M.K.), DE-SC0019277 (C.L.-S. and M.K.), DE-FG02-04ER15571 (S.M.), KC-030105066418 (N.G.), KC-030105172685 (N.G.), DE-AC02-76SF00515 (E.B., K.L., K.S.K, K.H., J.H.L., M.R., K.J.G., R.W.S. and A.A.C) and DE-AC02-06CH11357 (G.D., A.M.M. and S.H.S.). J.D.G. acknowledges support by the National Science Foundation Graduate Research Fellowship Program (no. DGE-1256082). Use of the Linac Coherent Light Source, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This research used resources of the Advanced Photon Source, a US Department of Energy Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. This research benefited from computational resources provided by the Environmental Molecular Sciences Laboratory, a US Department of Energy Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under US Department of Energy contract no. DE-AC05-76RL1830. This research also used resources from the National Energy Research Scientific Computing Center, a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Z.W.F., K.S.K., R.A.-M., M.C., J.D.G., J.M.G., K.H., T.K., J.H.L., M.R., D.S., R.W.S., N.G., A.A.C. and M.K. prepared and conducted the experiment at the Linac Coherent Light Source. Z.W.F., K.H., J.H.L., G.D., A.M.M., S.H.S. and A.A.C. measured the reference iron spectra at the Advanced Photon Source. J.M.C. synthesized the sample. E.B. analysed the experimental data and performed the MD simulations. E.B and K.L. analysed the results from the MD simulations. A.A., Y.Z., S.M. and N.G. performed the quantum-mechanics/molecular-mechanics, density functional theory and TDDFT calculations. E.B., K.L., C.L.-S., K.J.G., R.W.S., N.G., A.A.C. and M.K. interpreted the results. E.B. and A.A.C. wrote the article with contributions from all authors.

Corresponding authors

Correspondence to Elisa Biasin, Niranjan Govind, Amy A. Cordones or Munira Khalil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Mark Maroncelli, Simone Techert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–9, Figs. 1–24 and Tables 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biasin, E., Fox, Z.W., Andersen, A. et al. Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer. Nat. Chem. 13, 343–349 (2021). https://doi.org/10.1038/s41557-020-00629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00629-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing