Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic asymmetric C–C cross-couplings enabled by photoexcitation

Abstract

Enantioselective catalytic processes are promoted by chiral catalysts that can execute a specific mode of catalytic reactivity, channeling the chemical reaction through a certain mechanistic pathway. Here, we show how by simply using visible light we can divert the established ionic reactivity of a chiral allyl–iridium(iii) complex to switch on completely new catalytic functions, enabling mechanistically unrelated radical-based enantioselective pathways. Photoexcitation provides the chiral organometallic intermediate with the ability to activate substrates via an electron-transfer manifold. This redox event unlocks an otherwise inaccessible cross-coupling mechanism, since the resulting iridium(ii) centre can intercept the generated radicals and undergo a reductive elimination to forge a stereogenic centre with high stereoselectivity. This photochemical strategy enables difficult-to-realize enantioselective alkyl–alkyl cross-coupling reactions between allylic alcohols and readily available radical precursors, which are not achievable under thermal activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhancing the potential of generic modes of catalytic reactivity with light.
Fig. 2: Characterization and light-induced catalytic activity of the (η3-allyl)iridium(iii) complex Ir-1.
Fig. 3: Mechanistic considerations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2021458 (4g) and 2021459 (4h). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Ojima, I. (ed.) Catalytic Asymmetric Synthesis (John Wiley & Sons, 2010).

  2. Blaser, H. U. & Schmidt, E. (eds) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions (Wiley-VCH, 2010).

  3. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    Article  CAS  Google Scholar 

  4. Walsh, P. J. & Kozlowski, M. C. (eds) Fundamental of Asymmetric Catalysis (University Science Books, 2009).

  5. Arceo, E., Jurberg, I. D., Álvarez-Fernández, A. & Melchiorre, P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat. Chem. 5, 750–756 (2013).

    Article  CAS  Google Scholar 

  6. Silvi, M., Verrier, C., Rey, Y. P., Buzzetti, L. & Melchiorre, P. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals. Nat. Chem. 9, 868–873 (2017).

    Article  CAS  Google Scholar 

  7. Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    Article  CAS  Google Scholar 

  8. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  Google Scholar 

  9. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  Google Scholar 

  10. Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2 + 2] photocycloaddition reactions. Science 342, 840–843 (2013).

    Article  CAS  Google Scholar 

  11. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  Google Scholar 

  12. Skubi, K. L. et al. Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J. Am. Chem. Soc. 139, 17186–17192 (2017).

    Article  CAS  Google Scholar 

  13. Li, Y. et al. Copper(ii)-catalyzed asymmetric photoredox reactions: enantioselective alkylation of imines driven by visible light. J. Am. Chem. Soc. 140, 15850–15858 (2018).

    Article  CAS  Google Scholar 

  14. Chuentragool, P., Kurandina, D. & Gevorgyan, V. Catalysis with palladium complexes photoexcited by visible light. Angew. Chem. Int. Ed. 58, 11586–11598 (2019).

    Article  CAS  Google Scholar 

  15. Torres, G. M., Liu, Y. & Arndtsen, B. A. A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions. Science 368, 318–323 (2020).

    Article  CAS  Google Scholar 

  16. Gandeepan, P., Koeller, J., Korvorapun, K., Mohr, J. & Ackermann, L. Visible‐light‐enabled ruthenium‐catalyzed meta‐C−H alkylation at room temperature. Angew. Chem. Int. Ed. 58, 9820–9825 (2019).

    Article  CAS  Google Scholar 

  17. Sagadevan, A. & Greaney, M. F. meta‐Selective C−H activation of arenes at room temperature using visible light: dual‐function ruthenium catalysis. Angew. Chem. Int. Ed. 58, 9826–9830 (2019).

    Article  CAS  Google Scholar 

  18. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  Google Scholar 

  19. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  20. Rössler, S. L., Petrone, D. A. & Carreira, E. M. Iridium-catalyzed asymmetric synthesis of functionally rich molecules enabled by (phosphoramidite,olefin) ligands. Acc. Chem. Res. 52, 2657–2672 (2019).

    Article  Google Scholar 

  21. Rössler, S. L., Krautwald, S. & Carreira, E. M. Study of intermediates in iridium−(phosphoramidite,olefin)-catalyzed enantioselective allylic substitution. J. Am. Chem. Soc. 139, 3603–3606 (2017).

    Article  Google Scholar 

  22. Defieber, C., Ariger, M. A., Moriel, P. & Carreira, E. M. Iridium-catalyzed synthesis of primary allylic amines from allylic alcohols: sulfamic acid as ammonia equivalent. Angew. Chem. Int. Ed. 46, 3139–3143 (2007).

    Article  CAS  Google Scholar 

  23. Hartwig, J. F. & Pouy, M. J. in Iridium Catalysis (ed. Andersson, P. G.) 169–208 (Springer, 2011).

  24. Cheng, Q. et al. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 119, 1855–1969 (2019).

    Article  CAS  Google Scholar 

  25. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  Google Scholar 

  26. Zuo, Z. et al. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 138, 1832–1835 (2016).

    Article  CAS  Google Scholar 

  27. Zhang, H.-H., Zhao, J.-J. & Yu, S. Enantioselective allylic alkylation with 4-alkyl-1,4-dihydropyridines enabled by photoredox/palladium cocatalysis. J. Am. Chem. Soc. 140, 16914–16919 (2018).

    Article  CAS  Google Scholar 

  28. Farid, S. et al. Reexamination of the Rehm–Weller data set reveals electron transfer quenching that follows a Sandros–Boltzmann dependence on free energy. J. Am. Chem. Soc. 133, 11580–11587 (2011).

    Article  CAS  Google Scholar 

  29. Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019).

    Article  CAS  Google Scholar 

  30. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  Google Scholar 

  31. Blouin, N. & Leclerc, M. Poly(2,7-carbazole)s: structure–property relationships. Acc. Chem. Res. 41, 1110–1119 (2008).

    Article  CAS  Google Scholar 

  32. Głuszynska, A. Biological potential of carbazole derivatives. Eur. J. Med. Chem. 94, 405–426 (2015).

    Article  Google Scholar 

  33. Bertrand, F. et al. α-Scission of sulfonyl radicals: a versatile process for organic synthesis. C. R. Acad. Sci. Ser. IIc 4, 547–555 (2001).

    CAS  Google Scholar 

  34. Herath, A. C. & Becker, J. Y. Kinetics of redox mediator tris(4-bromophenyl)amine in acetonitrile and ionic liquid [BMIm][PF6]: oxidation of benzyl and cyclohexyl alcohols. J. Electroanal. Chem. 619–620, 98–104 (2008).

    Article  Google Scholar 

  35. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Professor Kilian Muñiz. Financial support was provided by Agencia Estatal de Investigación (PID2019-106278GB-I00 and CTQ2016-75520-P), the AGAUR (Grant 2017 SGR 981) and the European Research Council (ERC-2015-CoG 681840-CATA-LUX). G.E.M.C. thanks the EU for a Horizon 2020 Marie Skłodowska-Curie Fellowship (H2020-MSCA-IF-2017, 795793). D.M. thanks H2020-MSCA-ITN-2016 (722591–PHOTOTRAIN) for a predoctoral fellowship. We thank A. Llobet and J. Holub for assistance with differential pulse voltammetry and E. E. Adán for help with X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

G.E.M.C. and P.M. conceived and supervised the project. G.E.M.C., A.F., E.G. and D.M. performed all experiments. All authors contributed to the experimental design and the interpretation of data. G.E.M.C. and P.M. directed the research and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Paolo Melchiorre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Discussion, Tables 1 and 2, characterization of products, HPLC traces and 1H NMR and 13C NMR spectra.

Supplementary Data 1

Crystallographic data for compound 4g. CCDC 2021458.

Supplementary Data 2

Crystallographic data for compound 4h. CCDC 2021459.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisenza, G.E.M., Faraone, A., Gandolfo, E. et al. Catalytic asymmetric C–C cross-couplings enabled by photoexcitation. Nat. Chem. 13, 575–580 (2021). https://doi.org/10.1038/s41557-021-00683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00683-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing