Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards an ecosystem model of infectious disease

A Publisher Correction to this article was published on 26 May 2021

This article has been updated

Abstract

Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens—and the best ways to manage this—remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagrammatic representation of a disease episystem, depicting interactions between pathogens, their hosts and the environment, and the interface for spillover into people.
Fig. 2: Iterative development of an ecosystem model for infectious disease.
Fig. 3: Schematic of a GEpM as applied to predict the hazard posed by negative-strand RNA viruses.
Fig. 4: Schematic of a GEpM for a coastal estuarine ecosystem.

Similar content being viewed by others

Change history

References

  1. Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

  2. Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holmes, E. C., Rambaut, A. & Andersen, K. G. Pandemics: spend on surveillance, not prediction comment. Nature 558, 180–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Tabachnick, W. J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 213, 946–954 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Inf. Dis. 19, e302–e312 (2019).

    Article  Google Scholar 

  8. Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).

    Article  PubMed  Google Scholar 

  9. Johnson, P. T. J., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science 330, 243–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dallas, T. A., Laine, A.-L. L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B 286, 20191109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weinstein, S., Titcomb, G., Agwanda, B., Riginos, C. & Young, H. Parasite responses to large mammal loss in an African savanna. Ecology 98, 1839–1848 (2017).

    Article  PubMed  Google Scholar 

  14. Anderson, R. & May, R. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1992).

  15. Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton Univ. Press, 2011).

  16. Buhnerkempe, M. G. et al. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 10, 26–30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cross, P. C., Prosser, D. J., Ramey, A. M., Hanks, E. M. & Pepin, K. M. Confronting models with data: the challenges of estimating disease spillover. Philos. Trans. R. Soc. B 374, 20180435 (2019).

    Article  Google Scholar 

  18. Johnson, E. E., Escobar, L. E. & Zambrana-Torrelio, C. An ecological framework for modeling the geography of disease transmission. Trends Ecol. Evol. 34, 655–668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    Article  PubMed  Google Scholar 

  20. Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).

    Article  Google Scholar 

  22. Getz, W. M. et al. Making ecological models adequate. Ecol. Lett. 21, 153–166 (2018).

    Article  PubMed  Google Scholar 

  23. Carlson, C. J., Chipperfield, J. D., Benito, B. M., Telford, R. J. & O’Hara, R. B. Species distribution models are inappropriate for COVID-19. Nat. Ecol. Evol. 4, 770–771 (2020).

    Article  PubMed  Google Scholar 

  24. Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, 20131452 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Harfoot, M. B. J. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Redding, D. W. et al. Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat. Commun. 10, 4531 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).

    Article  Google Scholar 

  30. Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rynkiewicz, E. C., Pedersen, A. B. & Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 31, 212–221 (2015).

    Article  PubMed  Google Scholar 

  32. Lello, J. & Hussell, T. Functional group/guild modelling of inter-specific pathogen interactions: a potential tool for predicting the consequences of co-infection. Parasitology 135, 825–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Purves, D. et al. Time to model all life on Earth. Nature 493, 295–297 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kalka, M. B., Smith, A. R. & Kalko, E. K. V. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lafferty, K. D. et al. A general consumer-resource population model. Science 349, 854–857 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article  Google Scholar 

  37. Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hatton, I. A. et al. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science 349, 6252 (2015).

    Article  Google Scholar 

  39. Hatton, I. A., Dobson, A. P., Storch, D., Galbraith, E. D. & Loreau, M. Linking scaling laws across eukaryotes. Proc. Natl Acad. Sci. USA 116, 21616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Godon, J. J., Arulazhagan, P., Steyer, J. P. & Hamelin, J. Vertebrate bacterial gut diversity: size also matters. BMC Ecol. 16, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos. Trans. R. Soc. B 372, 20160173 (2017).

    Article  Google Scholar 

  43. De Leo, G. A. & Dobson, A. P. Allometry and simple epidemic models for microparasites. Nature 379, 720–722 (1996).

    Article  PubMed  Google Scholar 

  44. Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).

  45. Handel, A. & Rohani, P. Crossing the scale from within-host infection dynamics to between-host transmission fitness: A discussion of current assumptions and knowledge. Philos. Trans. R. Soc. B 370, 20140302 (2015).

  46. Tibayrenc, M. & Ayala, F. J. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc. Natl Acad. Sci. USA 109, E3305–E3313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. B 375, 1798 (2020).

    Article  Google Scholar 

  48. Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zeng, Q., Sukumaran, J., Wu, S. & Rodrigo, A. Neutral models of microbiome evolution. PLoS Comput. Biol. 11, e1004365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liautaud, K., van Nes, E. H., Barbier, M., Scheffer, M. & Loreau, M. Superorganisms or loose collections of species? A unifying theory of community patterns along environmental gradients. Ecol. Lett. 22, 1243–1252 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Wright, E. S. & Vetsigian, K. H. Inhibitory interactions promote frequent bistability among competing bacteria. Nat. Commun. 7, 11274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hekstra, D. R. & Leibler, S. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149, 1164–1173 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Lopatkin, A. J. & Collins, J. J. Predictive biology: modelling, understanding and harnessing microbial complexity. Nat. Rev. Microbiol. 18, 507–520 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez, A. & Gore, J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol. 11, e1001547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, F. et al. A unifying framework for interpreting and predicting mutualistic systems. Nat. Commun. 10, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Restif, O. et al. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol. Lett. 15, 1083–1094 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Herzog, S. A., Blaizot, S. & Hens, N. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. BMC Infect. Dis. 17, 1–10 (2017).

    Article  Google Scholar 

  59. Cotterill, G. G. et al. Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease dynamics. Philos. Trans. R. Soc. B 373, 20170093 (2018).

    Article  Google Scholar 

  60. Cross, P. C. et al. Estimating distemper virus dynamics among wolves and grizzly bears using serology and Bayesian state-space models. Ecol. Evol. 8, 8726–8735 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hopkins, J. B., Ferguson, J. M., Tyers, D. B. & Kurle, C. M. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem. PLoS ONE 12, e0174903 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schwartz, C. C. et al. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. J. Wildl. Manag. 78, 68–78 (2014).

    Article  Google Scholar 

  63. Chester, C. C. Yellowstone to Yukon: transborder conservation across a vast international landscape. Environ. Sci. Policy 49, 75–84 (2015).

    Article  Google Scholar 

  64. Young, H. S. et al. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. B 372, 20160116 (2017).

    Article  Google Scholar 

  65. Sitters, J., Kimuyu, D. M., Young, T. P., Claeys, P. & Olde Venterink, H. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).

    Article  Google Scholar 

  66. Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).

    Article  Google Scholar 

  67. Alfano, N., Dayaram, A. & Tsangaras, K. Non-invasive surveys of mammalian viruses using environmental DNA. Preprint at bioRxiv https://doi.org/10.1101/2020.03.26.009993 (2020)

  68. Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE 15, e0220926 (2020).

  70. McCallum, H. I. et al. Does terrestrial epidemiology apply to marine systems? Trends Ecol. Evol. 19, 585–591 (2004).

    Article  Google Scholar 

  71. Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R. & Dong, R. Sanitation in constructed wetlands: a review on the removal of human pathogens and fecal indicators. Sci. Total Environ. 541, 8–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Janssen, M. A., Walker, B. H., Langridge, J. & Abel, N. An adaptive agent model for analysing co-evolution of management and policies in a complex rangeland system. Ecol. Model. 131, 249–268 (2000).

    Article  Google Scholar 

  74. Ngonghala, C. N. et al. General ecological models for human subsistence, health and poverty. Nat. Ecol. Evol. 1, 1153–1159 (2017).

    Article  PubMed  Google Scholar 

  75. Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B 372, 20160129 (2017).

    Article  Google Scholar 

  76. Washburne, A. D. et al. Percolation models of pathogen spillover. Philos. Trans. R. Soc. B 374, 20180331 (2019).

    Article  Google Scholar 

  77. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).

    Article  PubMed  Google Scholar 

  79. Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).

    Article  PubMed  Google Scholar 

  80. Sokolow, S. H. et al. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos. Trans. R. Soc. B 374, 20180342 (2019).

    Article  Google Scholar 

  81. Kauffman, M. J. et al. Landscape heterogeneity shapes predation in a newly restored predator-prey system. Ecol. Lett. 10, 690–700 (2007).

    Article  PubMed  Google Scholar 

  82. Smith, D. W., Peterson, R. O. & Houston, D. B. Yellowstone after wolves. BioScience 53, 330–340 (2003).

    Article  Google Scholar 

  83. McNaughton, S. J. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55, 259–294 (1985).

    Article  Google Scholar 

  84. Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Cross, P. C., Edwards, W. H., Scurlock, B. M., Maichak, E. J. & Rogerson, J. D. Effects of management and climate on elk brucellosis in the Greater Yellowstone Ecosystem. Ecol. Appl. 17, 957–964 (2007).

    Article  PubMed  Google Scholar 

  86. Almberg, E. S., Cross, P. C. & Smith, D. W. Persistence of canine distemper virus in the Greater Yellowstone Ecosystem’s carnivore community. Ecol. Appl. 20, 2058–2074 (2010).

    Article  PubMed  Google Scholar 

  87. Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Borer, E. T. in Unsolved Problems in Ecology (eds Dobson, A. P. et al.) 3–15 (Princeton Univ. Press, 2020).

  89. Kao, R. H. et al. NEON terrestrial field observations: designing continental-scale, standardized sampling. Ecosphere https://doi.org/10.1890/ES12-00196.1 (2012).

  90. Springer, Y. P. et al. Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere 7, e01271 (2016).

    Article  Google Scholar 

  91. Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).

    Article  PubMed  Google Scholar 

  92. Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Kress, W. J., Mazet, J. A. K. & Hebert, P. D. N. Opinion: intercepting pandemics through genomics. Proc. Natl Acad. Sci. USA 117, 202009508 (2020).

    Article  Google Scholar 

  94. Durmuş, S. & Ülgen, K. Comparative interactomics for virus–human protein–protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio 7, 96–107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Becker, D. J. & Albery, G. F. Expanding host specificity and pathogen sharing beyond viruses. Mol. Ecol. 29, 3170–3172 (2020).

    Article  PubMed  Google Scholar 

  96. Rittershaus, E. S. C., Baek, S. H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pedersen, A. B. & Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 22, 133–139 (2007).

    Article  PubMed  Google Scholar 

  98. Schmid-Hempel, P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos. Trans. R. Soc. B 364, 85–98 (2009).

    Article  Google Scholar 

  99. Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. 5, E237–E245 (2021).

    Article  Google Scholar 

  100. Barychka, T., Mace, G. & Purves, D. The Madingley General Ecosystem Model predicts bushmeat yields, species extinction rates and ecosystem-level impacts of bushmeat harvesting. Preprint at biorXiv https://doi.org/10.1101/2020.03.02.959718 (2020).

Download references

Acknowledgements

J.H., D.Z. and Y.-M.L. were supported by the US Army Medical Research and Development Command under contract no. W81XWH-21-C-0001 and the Armed Forces Health Surveillance Division, Global Emerging Infections Surveillance branch (AFHSC-GEIS) award P0031_21_WR. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. T.N. is supported by two grants from the Leverhulme Trust (RPG-2015-073 and RPG-2018-069). L.H.V.F. is supported by the Natural Environment Research Council (NE-J001570–1).

Author information

Authors and Affiliations

Authors

Contributions

J.M.H. conceptualized the structure and content of the manuscript and wrote an initial draft. J.M.H., T.N., A.P.D., Y.-M.L., L.V.H.F., D.Z. and K.M.P.L. expanded upon the ideas contained within this initial draft, and engaged in discussion and editing of the final manuscript.

Corresponding author

Correspondence to James M. Hassell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Kim Pepin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassell, J.M., Newbold, T., Dobson, A.P. et al. Towards an ecosystem model of infectious disease. Nat Ecol Evol 5, 907–918 (2021). https://doi.org/10.1038/s41559-021-01454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01454-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology