Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests

An Author Correction to this article was published on 15 March 2023

This article has been updated

Abstract

A common mycorrhizal network (CMN) is formed when mycorrhizal fungal hyphae connect the roots of multiple plants of the same or different species belowground. Recently, CMNs have captured the interest of broad audiences, especially with respect to forest function and management. We are concerned, however, that recent claims in the popular media about CMNs in forests are disconnected from evidence, and that bias towards citing positive effects of CMNs has developed in the scientific literature. We first evaluated the evidence supporting three common claims. The claims that CMNs are widespread in forests and that resources are transferred through CMNs to increase seedling performance are insufficiently supported because results from field studies vary too widely, have alternative explanations or are too limited to support generalizations. The claim that mature trees preferentially send resources and defence signals to offspring through CMNs has no peer-reviewed, published evidence. We next examined how the results from CMN research are cited and found that unsupported claims have doubled in the past 25 years; a bias towards citing positive effects may obscure our understanding of the structure and function of CMNs in forests. We conclude that knowledge on CMNs is presently too sparse and unsettled to inform forest management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative explanations for the results of peer-reviewed, published field studies claiming positive effects of CMNs on interplant resource transfer or seedling performance for at least one set of environmental conditions.
Fig. 2: Methods used to evaluate CMNs in forests.
Fig. 3: Percentage of unsupported citations through time of influential studies on CMNs.

Similar content being viewed by others

Data availability

The datasets analysed in the current study are available from the University of Alberta Dataverse at https://doi.org/10.5683/SP3/88MZYX.

Change history

References

  1. Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries From a Secret World Vol. 1 (Greystone Books, 2016).

  2. Simard, S. W. Finding the Mother Tree: Discovering the Wisdom of the Forest (Knopf Doubleday Publishing Group, 2022).

  3. Powers, R. The Overstory (W. W. Norton & Company, 2018).

  4. Jabr, F. The social life of forests. New York Times Magazine https://www.nytimes.com/interactive/2020/12/02/magazine/tree-communication-mycorrhiza.html (2020).

  5. Kaplan, S. With forests in peril, she’s on a mission to save ‘mother trees’. Washington Post (27 December 2022).

  6. Chung, D. & Williams, R. T. Talking trees. Natl Geogr. 233, 6 (2018).

    Google Scholar 

  7. Grant, R. Do trees talk to each other? Smithsonian Magazine https://www.smithsonianmag.com/science-nature/the-whispering-trees-180968084/ (2018).

  8. Schwartzberg, L. Fantastic Fungi. Moving Art (2019).

  9. Druyan, A. Cosmos: Possible Worlds: the Search for Intelligent Life on Earth (2020).

  10. Mills, M. C’mon C’mon (2020).

  11. Simard, S. W. How trees talk to each other. YouTube https://www.youtube.com/watch?v=Un2yBgIAxYs (2016).

  12. Abumrad J & Krulwich, R. From tree to shining tree. Radiolab https://radiolab.org/episodes/from-tree-to-shining-tree (2016).

  13. Geddes, L. Unearthing the secret social lives of trees. The Guardian Science Weekly https://www.theguardian.com/science/audio/2021/apr/29/unearthing-the-secret-social-lives-of-trees-podcast (2021).

  14. Davies, D. Trees talk to each other. ‘Mother Tree’ ecologist hears lessons for people, too. National Public Radio https://www.npr.org/sections/health-shots/2021/05/04/993430007/trees-talk-to-each-other-mother-tree-ecologist-hears-lessons-for-people-too (2021).

  15. Braff, Z. Midnight train to Royston. Ted Lasso (2021).

  16. Murphy, R. Welcome, friends. The Watcher (2022).

  17. Milović, M., Kebert, M. & Orlović, S. How mycorrhizas can help forests to cope with ongoing climate change? Pregledni Članci Rev. 5, 279–286 (2021).

    Google Scholar 

  18. Simard, S. W. & Austin, M. E. in Climate Change and Variabilty (eds Simard, S. W. & Austin, M. E.) 275–302 (IntechOpen Europe, 2010).

  19. Domínguez-Núñez, J. A. in Structure and Functions of the Pedosphere (eds Giri, B. et al.) 365–391 (Springer, 2022).

  20. Authier, L., Violle, C. & Richard, F. Ectomycorrhizal networks in the anthropocene: from natural ecosystems to urban planning. Front. Plant Sci. 13, 900231 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).

    Article  PubMed  Google Scholar 

  22. Newman, E. Mycorrhizal links between plants—their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).

    Article  Google Scholar 

  23. Bonello, P., Bruns, T. D. & Gardes, M. Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol. 138, 533–542 (1998).

    Article  CAS  Google Scholar 

  24. Dahlberg, A. & Stenlid, J. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol. 128, 225–234 (1994).

    Article  PubMed  Google Scholar 

  25. Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161, 313–320 (2004).

    Article  CAS  Google Scholar 

  26. Figueiredo, A. F., Boy, J. & Guggenberger, G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.735299 (2021).

  27. Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).

    Article  Google Scholar 

  28. Trappe, J. M. & Fogel, R. in The Belowground Ecosystem: a Synthesis of Plant-Associated Processes (ed. Marshall J. K.) 205–214 (Colorado State Univ., 1977).

  29. Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 185, 543–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103, 616–628 (2015).

    Article  Google Scholar 

  31. Beiler, K. J., Simard, S. W., LeMay, V. & Durall, D. M. Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol. Ecol. 21, 6163–6174 (2012).

    Article  PubMed  Google Scholar 

  32. Lian, C., Narimatsu, M., Nara, K. & Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171, 825–836 (2006).

    Article  PubMed  Google Scholar 

  33. Van Dorp, C. H., Simard, S. W. & Durall, D. M. Resilience of Rhizopogon–Douglas-fir mycorrhizal networks 25 years after selective logging. Mycorrhiza 30, 467–474 (2020).

    Article  PubMed  Google Scholar 

  34. Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Article  PubMed  Google Scholar 

  36. Setälä, H. Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76, 1844–1851 (1995).

    Article  Google Scholar 

  37. Kanters, C., Anderson, I. C. & Johnson, D. Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by collembola. Forests 6, 2560–2570 (2015).

    Article  Google Scholar 

  38. Horton, T. R., Bruns, T. D. & Parker, V. T. Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77, 93–102 (1999).

    Google Scholar 

  39. Kennedy, P. G., Izzo, A. D. & Bruns, T. D. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91, 1071–1080 (2003).

    Article  Google Scholar 

  40. Kennedy, P. G., Smith, D. P., Horton, T. R. & Molina, R. J. Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am. J. Bot. 99, 1691–1701 (2012).

    Article  PubMed  Google Scholar 

  41. Horton, T. R., Molina, R. & Hood, K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15, 393–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Buscardo, E. et al. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 46, 136–144 (2012).

    Article  CAS  Google Scholar 

  43. Hewitt, R. E., Chapin, F. S. III, Hollingsworth, T. N. & Taylor, D. L. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Mol. Ecol. 26, 3826–3838 (2017).

    Article  PubMed  Google Scholar 

  44. Jia, S., Nakano, T., Hattori, M. & Nara, K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza 27, 733–745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hortal, S. et al. Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups. Mol. Ecol. 21, 2116–2129 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Wadud, M. A., Nara, K., Lian, C., Ishida, T. A. & Hogetsu, T. Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24, 551–563 (2014).

    Article  PubMed  Google Scholar 

  47. Germain, S. J. & Lutz, J. A. Shared friends counterbalance shared enemies in old forests. Ecology 102, e03495 (2021).

    Article  PubMed  Google Scholar 

  48. Simard, S. W. et al. Partial retention of legacy trees protect mycorrhizal inoculum potential, biodiversity, and soil resources while promoting natural regeneration of interior Douglas-fir. Front. For. Glob. Change 3, https://doi.org/10.3389/ffgc.2020.620436 (2021).

  49. Björkman, E. Monotropa hypopitys L.—an epiparasite on tree roots. Physiol. Plant. 13, 308–327 (1960).

    Article  Google Scholar 

  50. Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

    Article  CAS  Google Scholar 

  51. Read, D. The ties that bind. Nature 388, 517–518 (1997).

    Article  CAS  Google Scholar 

  52. Aleklett, K. & Boddy, L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol. Evol. 36, 787–796 (2021).

    Article  PubMed  Google Scholar 

  53. Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hasselquist, N. J. et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97, 1012–1022 (2016).

    PubMed  Google Scholar 

  55. Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol. 198, 214–221 (2013).

    Article  PubMed  Google Scholar 

  56. Hoeksema, J. D. in Mycorrhizal Networks (ed. Horton, T. R.) 255–277 (Springer Netherlands, 2015).

  57. Teste, F. P. & Simard, S. W. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158, 193–203 (2008).

    Article  PubMed  Google Scholar 

  58. Teste, F. P., Simard, S. W., Durall, D. M., Guy, R. D. & Berch, S. M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 98, 429–439 (2010).

    Article  CAS  Google Scholar 

  59. Teste, F. P. et al. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90, 2808–2822 (2009).

    Article  PubMed  Google Scholar 

  60. Lerat, S. et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132, 181–187 (2002).

    Article  PubMed  Google Scholar 

  61. Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. He, X., Bledsoe, C. S., Zasoski, R. J., Southworth, D. & Horwath, W. R. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol. 170, 143–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Schoonmaker, A. L., Teste, F. P., Simard, S. W. & Guy, R. D. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154, 455–466 (2007).

    Article  PubMed  Google Scholar 

  64. Warren, J. M., Brooks, J. R., Meinzer, F. C. & Eberhart, J. L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol. 178, 382–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Bingham, M. A. & Simard, S. W. Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For. Ecol. Manag. 287, 132–139 (2013).

    Article  Google Scholar 

  66. Kranabetter, J. M. Understory conifer seedling response to a gradient of root and ectomycorrhizal fungal contact. Can. J. Bot. 83, 638–646 (2005).

    Article  Google Scholar 

  67. Liang, M. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liang, M. et al. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytol. 230, 2061–2071 (2021).

    Article  PubMed  Google Scholar 

  69. McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).

    Article  PubMed  Google Scholar 

  70. Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30, 173–183 (2020).

    Article  PubMed  Google Scholar 

  71. Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    Article  PubMed  Google Scholar 

  72. Booth, M. G. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecol. Lett. 7, 538–546 (2004).

    Article  Google Scholar 

  73. Booth, M. G. & Hoeksema, J. D. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91, 2294–2302 (2010).

    Article  PubMed  Google Scholar 

  74. Brearley, F. Q. et al. Testing the importance of a common ectomycorrhizal network for dipterocarp seedling growth and survival in tropical forests of Borneo. Plant Ecol. Divers. 9, 563–576 (2016).

    Article  Google Scholar 

  75. Dehlin, H. et al. Tree seedling performance and below-ground properties in stands of invasive and native tree species. N. Z. J. Ecol. 32, 67–79 (2008).

    Google Scholar 

  76. Newbery, D. M. & Neba, G. A. Micronutrients may influence the efficacy of ectomycorrhizas to support tree seedlings in a lowland African rain forest. Ecosphere 10, e02686 (2019).

    Article  Google Scholar 

  77. Oliveira, I. R. et al. Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. For. Ecol. Manag. 491, 119192 (2021).

    Article  Google Scholar 

  78. Paula, R. R. et al. Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol. Biochem. 91, 99–108 (2015).

    Article  CAS  Google Scholar 

  79. Nygren, P. & Leblanc, H. A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol. 35, 134–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Y., Chen, H. & Mou, P. Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation. J. For. Res. 29, 339–346 (2018).

    Article  CAS  Google Scholar 

  81. Bingham, M. A. & Simard, S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15, 188–199 (2012).

    Article  CAS  Google Scholar 

  82. Robinson, D. & Fitter, A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9–13 (1999).

    Article  CAS  Google Scholar 

  83. Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).

    Article  CAS  Google Scholar 

  84. Jones, M. D., Durall, D. M. & Tinker, P. B. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125–134 (1998).

    Article  Google Scholar 

  85. Pickles, B. J. et al. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol. 214, 400–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Teste, F. P., Simard, S. W. & Durall, D. M. Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol. 2, 21–30 (2009).

    Article  Google Scholar 

  87. Bingham, M. A. & Simard, S. W. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22, 317–326 (2012).

    Article  PubMed  Google Scholar 

  88. Pec, G. J. et al. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytol. 213, 864–873 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Coomes, D. A. & Grubb, P. J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol. Monogr. 70, 171–207 (2000).

    Article  Google Scholar 

  90. Finlay, R. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 103, 143–156 (1986).

    Article  Google Scholar 

  91. Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71, 433–443 (1983).

    Article  Google Scholar 

  92. Wu, B., Nara, K. & Hogetsu, T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol. 149, 137–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Simard, S. W. in The Word for World is Still Forest (eds Springer, A. & Turpin, E.) 66–72 (K Verlag and Haus der Kulturen der Welt, 2017).

  94. Simard, S. W. in Memory and Learning in Plants (eds Baluska, F. et al.) 191–213 (Springer, 2018).

  95. Rasheed, M. U., Brosset, A. & Blande, J. D. Tree communication: the effects of “wired” and “wireless” channels on interactions with herbivores. Curr. For. Rep. 9, 33–47 (2023).

    Google Scholar 

  96. Song, Y. Y., Simard, S. W., Carroll, A., Mohn, W. W. & Zeng, R. S. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 5, 8495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gorzelak, M. A. Kin-Selected Signal Transfer Through Mycorrhizal Networks in Douglas-Fir. PhD thesis, Univ. British Columbia (2017).

  98. Asay, A. K. Mycorrhizal Facilitation of Kin Recognition in Interior Douglas-Fir (Pseudotsuga menziesii var. glauca). MSc thesis, Univ. British Columbia (2013).

  99. Orrego, G. Western Hemlock Regeneration on Coarse Woody Debris is Facilitated by Linkage into a Mycorrhizal Network in an Old-Growth Forest. MSc thesis, Univ. British Columbia (2018).

  100. Diédhiou, A. G. et al. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ. Microbiol. 12, 2219–2232 (2010).

    PubMed  Google Scholar 

  101. Grelet, G.-A. et al. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 188, 210–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Van der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150 (2009).

    Article  Google Scholar 

  103. Babikova, Z., Johnson, D., Bruce, T., Pickett, J. & Gilbert, L. Underground allies: how and why do mycelial networks help plants defend themselves? BioEssays 36, 21–26 (2014).

    Article  PubMed  Google Scholar 

  104. Alaux, P.-L., Zhang, Y., Gilbert, L. & Johnson, D. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants People Planet 3, 433–444 (2021).

    Article  Google Scholar 

  105. Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).

    Article  Google Scholar 

  106. Flinn, K. The idea that trees talk to cooperate is misleading. Scientific American https://www.scientificamerican.com/article/the-idea-that-trees-talk-to-cooperate-is-misleading/ (2021).

  107. Högberg, P. & Högberg, M. N. Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections. For. Ecol. Manag. 516, 120252 (2022).

    Article  Google Scholar 

  108. Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).

    Article  PubMed  Google Scholar 

  109. Toju, H., Guimarães, P. R., Olesen, J. M. & Thompson, J. N. Assembly of complex plant–fungus networks. Nat. Commun. 5, 5273 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Elsevier, 2008).

  111. Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169, 169–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Arnebrant, K., Ek, H., Finlay, R. D. & Söderström, B. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124, 231–242 (1993).

    Article  PubMed  Google Scholar 

  113. Finlay, R. D. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cauipes. New Phytol. 112, 185–192 (1989).

    Article  CAS  Google Scholar 

  114. Cahanovitc, R., Livne-Luzon, S., Angel, R. & Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 16, 1420–1429 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Teste, F. P., Veneklass, E. J., Dixon, K. W. & Lambers, H. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies? Plant Cell Environ. 38, 50–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Simard, S. W. et al. Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol. 137, 529–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. He, X., Critchley, C., Ng, H. & Bledsoe, C. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3 supplied as ammonium nitrate. New Phytol. 167, 897–912 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. He, X., Critchley, C., Ng, H. & Bledsoe, C. Reciprocal N (15NH4+ or 15NO3) transfer between nonN2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163, 629–640 (2004).

    Article  PubMed  Google Scholar 

  120. Bingham, M. A. & Simard, S. W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecol. Evol. 1, 306–316 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).

    Article  PubMed  Google Scholar 

  122. Birch, J. D., Simard, S. W., Beiler, K. J. & Karst, J. Beyond seedlings: ectomycorrhizal fungal networks and growth of mature Pseudotsuga menziesii. J. Ecol. 109, 806–818 (2021).

    Article  CAS  Google Scholar 

  123. Färkkilä, S. M. A. et al. Fluorescent nanoparticles as tools in ecology and physiology. Biol. Rev. 96, 2392–2424 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Mounts, S. Draud and D. Durall for participating in early discussions. I. Mounts provided the Web of Science search term and aided in screening studies for inclusion. R. Jackson formatted and cross-checked the unsupported citations for accuracy and made Supplementary Fig. 1. C. Karst designed Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

The focus of this Perspective was conceived by all of the authors and the writing was shared. J.K. led the evaluation of citations, with feedback from M.D.J. and J.D.H.

Corresponding author

Correspondence to Justine Karst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Peter Kennedy, Toby Kiers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Tables 1 and 2 and Fig, 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karst, J., Jones, M.D. & Hoeksema, J.D. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat Ecol Evol 7, 501–511 (2023). https://doi.org/10.1038/s41559-023-01986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-01986-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing