Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Springtime arctic ozone depletion forces northern hemisphere climate anomalies

Abstract

Large-scale chemical depletion of ozone due to anthropogenic emissions occurs over Antarctica as well as, to a lesser degree, the Arctic. Surface climate predictability in the Northern Hemisphere might be improved due to a previously proposed, albeit uncertain, link to springtime ozone depletion in the Arctic. Here we use observations and targeted chemistry–climate experiments from two models to isolate the surface impacts of ozone depletion from complex downward dynamical influences. We find that springtime stratospheric ozone depletion is consistently followed by surface temperature and precipitation anomalies with signs consistent with a positive Arctic Oscillation, namely, warm and dry conditions over southern Europe and Eurasia and moistening over northern Europe. Notably, we show that these anomalies, affecting large portions of the Northern Hemisphere, are driven substantially by the loss of stratospheric ozone. This is due to ozone depletion leading to a reduction in short-wave radiation absorption, when in turn causing persistent negative temperature anomalies in the lower stratosphere and a delayed break-up of the polar vortex. These results indicate that the inclusion of interactive ozone chemistry in atmospheric models can considerably improve the predictability of Northern Hemisphere surface climate on seasonal timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface climate following springtime Arctic ozone depletion.
Fig. 2: The AO index following winters with extreme ozone loss.
Fig. 3: Simulation set-up and ozone feedback mechanism.
Fig. 4: Influence of ozone depletion on stratosphere–troposphere coupling.
Fig. 5: Impact of ozone feedbacks on short-wave and dynamical heating.

Similar content being viewed by others

Data availability

The modelling data used in this study are available in the ETH Research Collection. Data for WACCM are available at https://www.research-collection.ethz.ch/handle/20.500.11850/52715565. Data for SOCOL-MPIOM are available at https://www.research-collection.ethz.ch/handle/20.500.11850/54603966. The MERRA2 reanalysis data can be downloaded from the Goddard Earth Sciences Data and Information Services Center (GES DIC) (https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-2%22&page=1&source=Models%2FAnalyses%20MERRA-2).

Code availability

All codes and scripts used for the analysis in this study are available from the corresponding author upon reasonable request.

References

  1. Solomon, S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    Article  Google Scholar 

  2. Henriksen, T., Dahlback, A., Larsen, S. H. & Moan, J. Ultraviolet-radiation and skin cancer. Effect of an ozone layer depletion. Photochem. Photobiol. 51, 579–582 (1990).

    Article  Google Scholar 

  3. Ballaré, C. L. et al. Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina): an overview of recent progress. J. Photochem. Photobiol. B 62, 67–77 (2001).

    Article  Google Scholar 

  4. Gillett, N. P. & Thompson, D. W. J. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).

    Article  Google Scholar 

  5. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  Google Scholar 

  6. Bandoro, J., Solomon, S., Donohoe, A., Thompson, D. W. J. & Santer, B. D. Influences of the Antarctic ozone hole on Southern Hemispheric summer climate change. J. Clim. 27, 6245–6264 (2014).

    Article  Google Scholar 

  7. Dennison, F., Mcdonald, A. & Morgenstern, O. The effect of ozone depletion on the Southern Annular Mode and stratosphere–troposphere coupling. J. Geophys. Res. Atmos. https://doi.org/10.1002/2014JD023009 (2015).

  8. Thompson, D. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article  Google Scholar 

  9. Gillett, Z. E. et al. Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry–climate models. J. Clim. 32, 3131–3151 (2019).

    Article  Google Scholar 

  10. Son, S.-W., Purich, A., Hendon, H. H., Kim, B.-M. & Polvani, L. M. Improved seasonal forecast using ozone hole variability? Geophys. Res. Lett. 40, 6231–6235 (2013).

    Article  Google Scholar 

  11. Lawrence, Z. D. et al. The remarkably strong Arctic stratospheric polar vortex of winter 2020: links to record-breaking Arctic Oscillation and ozone loss. J. Geophys. Res. Atmos. 125, e2020JD033271 (2020).

    Article  Google Scholar 

  12. Manney, G. L. et al. Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett. 47, e2020GL089063 (2020).

    Article  Google Scholar 

  13. Ivy, D. J., Solomon, S., Calvo, N. & Thompson, D. W. J. Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ. Res. Lett. 12, 024004 (2017).

    Article  Google Scholar 

  14. Calvo, N., Polvani, L. M. & Solomon, S. On the surface impact of Arctic stratospheric ozone extremes. Environ. Res. Lett. 10, 094003 (2015).

    Article  Google Scholar 

  15. Stone, K. A., Solomon, S., Kinnison, D. E., Baggett, C. F. & Barnes, E. A. Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geophys. Res. Atmos. 124, 5922–5933 (2019).

    Article  Google Scholar 

  16. Monge-Sanz, B. M. et al. A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future. Atmos. Chem. Phys. https://doi.org/10.5194/acp-22-4277-2022 (2022).

  17. Ayarzagüena, B. & Serrano, E. Monthly characterization of the tropospheric circulation over the Euro-Atlantic area in relation with the timing of stratospheric final warmings. J. Clim. 22, 6313–6324 (2009).

    Article  Google Scholar 

  18. Black, R. X. & McDaniel, B. A. The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci. 64, 2932–2946 (2007).

    Article  Google Scholar 

  19. Domeisen, D. I. V. & Butler, A. H. Stratospheric drivers of extreme events at the Earth’s surface. Commun. Earth Environ. 1, 59 (2020).

    Article  Google Scholar 

  20. Harari, O. et al. Influence of Arctic stratospheric ozone on surface climate in CCMI models. Atmos. Chem. Phys. 19, 9253–9268 (2019).

    Article  Google Scholar 

  21. Rao, J. & Garfinkel, C. I. Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: a comparative study with the 1997 and 2011 cases. J. Geophys. Res. Atmos. 125, e2020JD033524 (2020).

    Article  Google Scholar 

  22. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  23. Eyring, V. et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos. 118, 5029–5060 (2013).

    Article  Google Scholar 

  24. Cionni, I. et al. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos. Chem. Phys. 11, 11267–11292 (2011).

    Article  Google Scholar 

  25. McCormack, J. P., Nathan, T. R. & Cordero, E. C. The effect of zonally asymmetric ozone heating on the Northern Hemisphere winter polar stratosphere. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045937 (2011).

  26. Zhang, J. et al. The Influence of zonally asymmetric stratospheric ozone changes on the Arctic polar vortex shift. J. Clim. 33, 4641–4658 (2020).

    Article  Google Scholar 

  27. Haase, S. & Matthes, K. The importance of interactive chemistry for stratosphere–troposphere coupling. Atmos. Chem. Phys. 19, 3417–3432 (2019).

    Article  Google Scholar 

  28. Gelaro, R. et al. The mModern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  29. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

    Article  Google Scholar 

  30. Domeisen, D. I. Estimating the frequency of sudden stratospheric warming events from surface observations of the North Atlantic Oscillation. J. Geophys. Res. Atmos. 124, 3180–3194 (2019).

    Article  Google Scholar 

  31. Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–7391 (2013).

    Article  Google Scholar 

  32. Muthers, S. et al. The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM. Geosci. Model Dev. 7, 2157–2179 (2014).

    Article  Google Scholar 

  33. Oehrlein, J., Chiodo, G. & Polvani, L. M. The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events. Atmos. Chem. Phys. 20, 10531–10544 (2020).

    Article  Google Scholar 

  34. Solomon, S., Garcia, R., Rowland, F. & Wuebbles, D. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    Article  Google Scholar 

  35. Kuroda, Y. & Kodera, K. Variability of the polar-night jet in the Northern and Southern Hemispheres. J. Geophys. Res. Atmos. 106, 20703–20713 (2001).

    Article  Google Scholar 

  36. Kuroda, Y. & Kodera, K. Role of the Polar-night Jet Oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter. J. Geophys. Res. Atmos. (2004). https://doi.org/10.1029/2003JD004123 (2004).

  37. Runde, T., Dameris, M., Garny, H. & Kinnison, D. E. Classification of stratospheric extreme events according to their downward propagation to the troposphere. Geophys. Res. Lett. 43, 6665–6672 (2016).

    Article  Google Scholar 

  38. Charney, J. G. & Drazin, P. G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109 (1961).

    Article  Google Scholar 

  39. Lin, P. et al. Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology. Geophys. Res. Lett. 44, 6391–6398 (2017).

    Article  Google Scholar 

  40. Butler, A. et al. in Sub-seasonal to Seasonal Prediction (eds Robertson, A. W. & Vitart, F.) 223–241 (Elsevier, 2019); https://doi.org/10.1016/B978-0-12-811714-9.00011-5

  41. Nie, Y. et al. Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations. Environ. Res. Lett. 14, 034006 (2019).

    Article  Google Scholar 

  42. Domeisen, D. I. V. et al. The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere–troposphere coupling. J. Geophys. Res. Atmos. 125, e2019JD030923 (2020).

    Google Scholar 

  43. Butler, A. H., Perez, A. C., Domeisen, D. I. V., Simpson, I. R. & Sjoberg, J. Predictability of Northern Hemisphere final stratospheric warmings and their surface impacts. Geophys. Res. Lett. 43, 23 (2019).

    Google Scholar 

  44. Beerli, R., Wernli, H. & Grams, C. M. Does the lower stratosphere provide predictability for month-ahead wind electricity generation in Europe? Q. J. R. Meteorol. Soc. 143, 3025–3036 (2017).

    Article  Google Scholar 

  45. Charlton-Perez, A. J., Aldridge, R. W., Grams, C. M. & Lee, R. Winter pressures on the UK health system dominated by the Greenland Blocking weather regime. Weather Clim. Extrem. 25, 100218 (2019).

    Article  Google Scholar 

  46. Butler, A. H. et al. The Climate-System Historical Forecast Project: do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Q. J. R. Meteorol. Soc. 142, 1413–1427 (2016).

    Article  Google Scholar 

  47. Kolstad, E. W., Wulff, C. O., Domeisen, D. I. V. & Woollings, T. Tracing North Atlantic Oscillation forecast errors to stratospheric origins. J. Clim. 33, 9145–9157 (2020).

    Article  Google Scholar 

  48. Domeisen, D. I. et al. The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos. 125, e2019JD030920 (2020).

    Google Scholar 

  49. Bednarz, E. M. et al. Future Arctic ozone recovery: the importance of chemistry and dynamics. Atmos. Chem. Phys. 16, 12159–12176 (2016).

    Article  Google Scholar 

  50. Danabasoglu, G. et al. The CCSM4 ocean component. J. Clim. 25, 1361–1389 (2012).

    Article  Google Scholar 

  51. Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. & Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J. Clim. 25, 1413–1430 (2012).

    Article  Google Scholar 

  52. Rieder, H. E., Chiodo, G., Fritzer, J., Wienerroither, C. & Polvani, L. M. Is interactive ozone chemistry important to represent polar cap stratospheric temperature variability in Earth-system models? Environ. Res. Lett. 14, 044026 (2019).

    Article  Google Scholar 

  53. Kinnison, D. E. et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD007879 (2007).

  54. Smith, K. L., Neely, R. R., Marsh, D. R. & Polvani, L. M. The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst. 6, 883–901 (2014).

    Article  Google Scholar 

  55. Egorova, T., Rozanov, E., Zubov, V. & Karol, I. Model for investigating ozone trends (MEZON). Izvestiya Atmos. Ocean Phys. 39, 277–292 (2003).

    Google Scholar 

  56. Stenke, A. et al. The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev. 6, 1407–1427 (2013).

    Article  Google Scholar 

  57. Brönnimann, S., Annis, J. L., Vogler, C. & Jones, P. D. Reconstructing the quasi-biennial oscillation back to the early 1900s. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031354 (2007).

  58. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  Google Scholar 

  59. Waugh, D. W. et al. Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040419 (2009).

  60. Baldwin, M. P. & Thompson, D. W. A critical comparison of stratosphere–troposphere coupling indices. Q. J. R. Meteorol. Soc. 135, 1661–1672 (2009).

    Article  Google Scholar 

  61. Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics (Academic Press, 1987).

  62. Calvo, N., Garcia, R. R. & Kinnison, D. E. Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: the role of dynamical forcing. Geophys. Res. Lett. 44, 3402–3410 (2017).

    Article  Google Scholar 

  63. Garcia, R. R., Kinnison, D. E. & Marsh, D. R. “World avoided” simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018430 (2012).

  64. Butler, A. H. & Gerber, E. P. Optimizing the definition of a sudden stratospheric warming. J. Clim. 31, 2337–2344 (2018).

    Article  Google Scholar 

  65. Friedel, M. & Chiodo, G. Model results for “Robust effect of springtime Arctic ozone depletion on surface climate”. ETH Zürich https://doi.org/10.3929/ethz-b-000527155 (2022).

  66. Friedel, M. & Chiodo, G. Model results for “Robust effect of springtime Arctic ozone depletion on surface climate”, part 2. Data for SOCOL-MPIOM. ETH Zürich https://doi.org/10.3929/ethz-b-000546039 (2022).

Download references

Acknowledgements

We are grateful for the assistance from U. Beyerle in data management and thank S. Muthers for support in the chemistry–climate modelling with SOCOL-MPIOM. Support from the Swiss National Science Foundation through Ambizione Grant PZ00P2_180043 for M.F. and G.C and projects PP00P2_170523 and PP00P2_198896 to D.D. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

G.C. conceived the modelling experiments. G.C., M.F., A.S. and J.A. conducted the modelling experiments. M.F. and G.C. processed the data. M.F., G.C., T.P., D.D. and S.F. analysed and interpreted the results. M.F. wrote the paper with input from all authors.

Corresponding author

Correspondence to Marina Friedel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Robyn Schofield and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Surface climate following springtime Arctic ozone depletion in SOCOL-MPIOM.

Composites of sea level pressure (a, d, g), surface temperature (b, e, h) and precipitation (c, f, i) in SOCOL-MPIOM INT-3D (top row), CLIM-3D (middle row) and CLIM-2D (bottom row) after ozone minima in the 25% of winters with most extreme ozone loss (average over the 30 days after the ozone minimum date). Stippling shows significance on a 4.6% level following a bootstrapping test. Further discussion on this Figure is found in the supplementary information (section S1).

Extended Data Fig. 2 The Arctic Oscillation (AO) index following winters with extreme ozone.

The box plot shows the distribution of the mean AO index (20 - 90° N) at 1000 hPa in the 30 days following the ozone minimum for WACCM and SOCOL-MPIOM (INT-3D (red), CLIM-3D (blue) and CLIM-2D (grey)) and MERRA2 (left box). Triangles and numbers indicate the mean AO index in the 30 days after the ozone minima averaged over the 25% most extreme winters. The upper and lower edges of the boxes show the upper and lower quartile, the whiskers represent the maximum and minimum values of the respective distribution. Grey lines show averages over model simulations. Further discussion on this Figure is found in the supplementary information (sections S1, S2).

Extended Data Fig. 3 Influence of ozone depletion on stratosphere-troposphere coupling in SOCOL-MPIOM.

Composites of Northern Annular Mode (NAM) indices (20 - 90° N) around the ozone minima in SOCOL-MPIOM INT-3D (a), CLIM-3D (b) and CLIM-2D (c). Day zero indicates the ozone minimum date. Stippling shows significance on a 4.6% level following a bootstrapping test. Further discussion on this Figure is found in the supplementary information (section S1).

Extended Data Fig. 4 Impact of ozone feedbacks on shortwave and dynamical heating in WACCM and SOCOL-MPIOM.

Differences of polar cap (60-90° N) temperature (a-d), ozone (e-h), shortwave heating (i-l) and dynamical heating (m-p) anomalies between INT-3D and CLIM-3D as well as between INT-3D and CLIM-2D around the ozone minima in WACCM (first and second column) and SOCOL-MPIOM (third and fourth column). Day zero indicates the ozone minimum date. Contour lines in the temperature plot show temperature anomalies around the ozone minima in CLIM with a contour interval of 1.5 K. Stippling shows significance on a 4.6% level following a bootstrapping test. Further discussion on this Figure is found in the supplementary information (section S1).

Extended Data Fig. 5 Influence of ozone feedbacks on surface climate in WACCM.

Difference in mean SLP (a, d), surface temperature (b, e) and precipitation (c, f) anomalies in INT-3D minus CLIM-3D (upper row) and INT-3D minus CLIM-2D (bottom row) for the 25% of years with the lowest springtime ozone concentrations in WACCM (average over the 30 days after the ozone minimum date). Stippling shows significance on a 4.6% level following a bootstrapping test. Further discussion on this Figure is found in the supplementary information (section S2).

Extended Data Fig. 6 Influence of ozone feedbacks on surface climate in SOCOL.

Difference in mean SLP (a, d), surface temperature (b, e) and precipitation (c, f) anomalies in INT-3D - CLIM-3D (upper row) and INT-3D - CLIM-2D (bottom row) for the 25% of years with the lowest spring ozone concentrations in SOCOL-MPIOM (average over the 30 days after the ozone minimum date). Stippling shows significance on a 4.6% level following a bootstrapping test. Further discussion on this Figure is found in the supplementary information (section S2).

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1 and 2 and discussion.

Extended data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedel, M., Chiodo, G., Stenke, A. et al. Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nat. Geosci. 15, 541–547 (2022). https://doi.org/10.1038/s41561-022-00974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00974-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing