Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity

Abstract

‘Sudden’ quantum quench and prethermalization have become a cross-cutting theme for discovering emergent states of matter1,2,3,4. Yet this remains challenging in electron matter5,6,7,8,9, especially superconductors10,11,12,13,14. The grand question of what is hidden underneath superconductivity (SC)15 appears universal, but poorly understood. Here we reveal a long-lived gapless quantum phase of prethermalized quasiparticles (QPs) after a single-cycle terahertz (THz) quench of a Nb3Sn SC gap. Its conductivity spectra is characterized by a sharp coherent peak and a vanishing scattering rate that decreases almost linearly towards zero frequency, which is most pronounced around the full depletion of the condensate and absent for a high-frequency pump. Above a critical pump threshold, such a QP phase with coherent transport and memory persists as an unusual prethermalization plateau, without relaxation to normal and SC thermal states for an order of magnitude longer than the QP recombination and thermalization times. Switching to this metastable ‘quantum QP fluid’ signals non-thermal quench of coupled SC and charge-density-wave (CDW)-like orders and hints quantum control beneath the SC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cycle THz quantum quench and phase transition in a Nb3Sn A15 superconductor.
Fig. 2: The distinct spectral features of the gapless quantum state differ from both normal metallic states and thermal behaviours.
Fig. 3: The persisting prethermalized plateau state with non-thermal characteristics and a long-lived memory.
Fig. 4: Predictions of the theoretical model for the hidden gapless quantum state with extraordinary conductivity.

Similar content being viewed by others

References

  1. Aoki, H. et al. Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014).

    Article  Google Scholar 

  2. Langen, T. et al. Experimental observation of a generalized Gibbs ensemble. Science 348, 207–211 (2015).

    Article  Google Scholar 

  3. Barankov, R. A. & Levitov, L. S. Synchronization in the BCS pairing dynamics as a critical phenomenon. Phys. Rev. Lett. 96, 230403 (2006).

    Article  Google Scholar 

  4. Yuzbashyan, E. A. & Dzero, M. Dynamical vanishing of the order parameter in a fermionic condensate. Phys. Rev. Let. 96, 230404 (2006).

    Article  Google Scholar 

  5. Torchinsky, D. H. et al. Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12, 387–391 (2013).

    Article  Google Scholar 

  6. Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin charge quantum excitations. Nature 496, 69–73 (2013).

    Article  Google Scholar 

  7. Patz, A. et al. Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides. Nat. Commun. 5, 3229 (2014).

    Article  Google Scholar 

  8. Porer, M. et al. Non-thermal separation of electronic and structural orders in a persisting charge density wave. Nat. Mater. 13, 857–861 (2014).

    Article  Google Scholar 

  9. Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    Article  Google Scholar 

  10. Matsunaga, R. & Shimano, R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Phys. Rev. Lett. 109, 187002 (2012).

    Article  Google Scholar 

  11. Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb 1−x Ti x N induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    Article  Google Scholar 

  12. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  Google Scholar 

  13. Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photon. 5, 485–488 (2011).

    Article  Google Scholar 

  14. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–192 (2011).

    Article  Google Scholar 

  15. Broun, D. M. What lies beneath the dome? Nat. Phys. 4, 170–172 (2008).

    Article  Google Scholar 

  16. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    Article  Google Scholar 

  17. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  Google Scholar 

  18. Beck, M. et al. Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses. Phys. Rev. Lett. 110, 267003 (2013).

    Article  Google Scholar 

  19. Shirane, G. & Axe, J. D. Neutron scattering study of the lattice-dynamical phase transition in Nb3Sn. Phys. Rev. B 4, 2957–2963 (1971).

    Article  Google Scholar 

  20. Bilbro, G. & McMillan, W. L. Theoretical model of superconductivity and the martensitic transformation in A15 compounds. Phys. Rev. B 14, 1887–1892 (1976).

    Article  Google Scholar 

  21. Markiewicz, R. S. A survey of the Van Hove scenario for high Tc superconductivity with special emphasis on pseudogaps and striped phases. J. Phys. Chem. Solids 58, 1179–1310 (1997).

    Article  Google Scholar 

  22. Escudero, R. & Morale, F. Point contact spectroscopy of Nb3Sn crystals: evidence of a CDW gap related to the martensitic transition. Solid State Commun. 150, 715–719 (2010).

    Article  Google Scholar 

  23. Bhatt, R. N. Microscopic theory of the martensitic transition in A-15 compounds based on a three-dimensional band structure. Phys. Rev. B 16, 1915–1932 (1977).

    Article  Google Scholar 

  24. Bhatt, R. N. & Lee, P. A. Theory of coherence length and phonon softening in A-15 compounds. Phys. Rev. B 16, 4288–4301 (1977).

    Article  Google Scholar 

  25. Weber, W. & Mattheiss, L. F. Electronic structure of tetragonal Nb3Sn. Phys. Rev. B 25, 2270–2284 (1982).

    Article  Google Scholar 

  26. Sadigh, B. & Ozolins, V. Structural instability and electronic excitations in Nb3Sn. Phys. Rev. B 57, 2793–2800 (1997).

    Article  Google Scholar 

  27. Owen, C. S. & Scalapino, D. J. Superconducting state under the influence of external dynamic pair breaking. Phys. Rev. Lett. 28, 1559–1561 (1972).

    Article  Google Scholar 

  28. Chou, Y. Z. et al. Twisting Anderson pseudospins with light: quench dynamics in terahertz-pumped BCS superconductors. Phys. Rev. B 95, 104507 (2017).

    Article  Google Scholar 

  29. Stojchevska, L. et al. Ultrafast switching to a stable hidden topologically protected quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  Google Scholar 

  30. Lingos, P. C., Wang, J. & Perakis, I. E. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing. Phys. Rev. B 91, 195203 (2015).

    Article  Google Scholar 

  31. Yang, X. et al. Non-equilibrium pair breaking in Ba(Fe1−xCo x )2As2 superconductors: evidence for formation of photo-induced excitonic spin-density-wave state. Preprint at https://arxiv.org/abs/1804.04987 (2018).

  32. Papenkort, T., Axt, V. M. & Kuhn, T. Coherent dynamics and pump-probe spectra of BCS superconductors. Phys. Rev. B 76, 224522 (2007).

    Article  Google Scholar 

  33. Schnyder, A. P., Manske, D. & Avella, A. Resonant generation of coherent phonons in a superconductor by ultrafast optical pump pulses. Phys. Rev. B 84, 214513 (2011).

    Article  Google Scholar 

  34. Fernandes, R. M. & Schmalian, J. Transfer of optical spectral weight in magnetically ordered superconductors. Phys. Rev. B 82, 014520 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Work at Iowa State University was supported by the Army Research Office under award W911NF-15-1-0135 (THz quantum quench spectroscopy). Work at the University of Wisconsin was supported by funding from the DOE Office of Basic Energy Sciences under award number DE-FG02-06ER46327 (structural and electrical characterizations) and DOE Grant no. DE-SC100387-020 (sample growth). Work at the University of Alabama at Birmingham was supported by start-up funds. The THz instrument was supported in part by the M. W. Keck Foundation (J.W.).

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and C.V. performed the THz pump–probe spectroscopy measurements and collected the data. C.S., J.H.K. and C.B.E. grew the samples and performed structural and electrical characterizations. M.M. and I.E.P. developed the theory for the hidden phase calculations. J.W., X.Y., C.V. and L.L. analysed the results with the help of P.P.O. and P.G. The paper was written by J.W. and I.E.P., with discussions from all the authors. J.W. conceived and supervised the project.

Corresponding author

Correspondence to J. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, 21 pages, Supplementary Figures 1–3, Supplementary References 1–35

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Vaswani, C., Sundahl, C. et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nature Mater 17, 586–591 (2018). https://doi.org/10.1038/s41563-018-0096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0096-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing