Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite

Matters Arising to this article was published on 16 September 2019

Abstract

The extraordinary optoelectronic performance of hybrid organic–inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current–voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear. Here, using multimodal chemical and functional imaging methods, we unveil the mechanical origin of the twin domain contrast observed with piezoresponse force microscopy in methylammonium lead triiodide. By combining experimental results with first principles simulations we reveal an inherent coupling between ferroelastic twin domains and chemical segregation. These results reveal an interplay of ferroic properties and chemical segregation on the optoelectronic performance of hybrid organic–inorganic perovskites, and offer an exploratory path to improving functional devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Band excitation frequency tracking.
Fig. 2: LDV–PFM measurements taken at a drive frequency of 335 kHz.
Fig. 3: SEM.
Fig. 4: HIM–SIMS.
Fig. 5: AFM-IR and polarization-resolved two-photon TIRFM.

Similar content being viewed by others

References

  1. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  Google Scholar 

  2. Dong, R. et al. High‐gain and low‐driving‐voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912–1918 (2015).

    Article  CAS  Google Scholar 

  3. Su, L. et al. Photoinduced enhancement of a triboelectric nanogenerator based on an organolead halide perovskite. J. Mater. Chem. C 4, 10395–10399 (2016).

    Article  CAS  Google Scholar 

  4. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  CAS  Google Scholar 

  5. Rashkeev, S. N., El-Mellouhi, F., Kais, S. & Alharbi, F. H. Domain walls conductivity in hybrid organometallic perovskites and their essential role in CH3NH3PbI3 solar cell high performance. Sci. Rep. 5, 11467 (2015).

    Article  CAS  Google Scholar 

  6. Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    Article  CAS  Google Scholar 

  7. Bi, F. et al. Enhanced photovoltaic properties induced by ferroelectric domain structures in organometallic halide perovskites. J. Phys. Chem. C 121, 11151–11158 (2017).

    Article  CAS  Google Scholar 

  8. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  9. Li, Q. et al. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy. ACS Nano 9, 1848–1857 (2015).

    Article  CAS  Google Scholar 

  10. Balke, N. et al. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity. ACS Nano 8, 10229–10236 (2014).

    Article  CAS  Google Scholar 

  11. Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J. Phys. Chem. C 120, 5724–5731 (2016).

    Article  CAS  Google Scholar 

  12. Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Article  CAS  Google Scholar 

  13. Röhm, H., Leonhard, T., Hoffmann, M. J. & Colsmann, A. Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy Environ. Sci. 10, 950–955 (2017).

    Article  CAS  Google Scholar 

  14. MacDonald, G. A. et al. Determination of the true lateral grain size in organic–inorganic halide perovskite thin films. ACS Appl. Mater. Interfaces 9, 33565–33570 (2017).

    Article  CAS  Google Scholar 

  15. Huang, B. et al. Ferroic domains of alternating polar and nonpolar orders regulate photocurrent in single crystalline CH3NH3PbI3 films self-grown on FTO/TiO2 substrate. Preprint at http://arXiv/cond-mat.mtrl-sci/1801.08305 (2018).

  16. Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nat. Commun. 8, 14547 (2017).

    Article  CAS  Google Scholar 

  17. Nambu, S. & Sagala, D. A. Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838–5847 (1994).

    Article  CAS  Google Scholar 

  18. Salje, E. & Ishibashi, Y. Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J. Phys. Condens. Mat. 8, 8477–8495 (1996).

    Article  CAS  Google Scholar 

  19. Mao, J. et al. High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundaries. Nano Energy 17, 279–289 (2015).

    Article  CAS  Google Scholar 

  20. Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit ‘ferroelectricity’ on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).

    Article  CAS  Google Scholar 

  21. Xie, W., Tang, X., Yan, Y., Zhang, Q. & Tritt, T. M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).

    Article  CAS  Google Scholar 

  22. Lee, K. & Baik, S. Ferroelastic domain structure and switching in epitaxial ferroelectric thin films. Annu. Rev. Mater. Res. 36, 81–116 (2006).

    Article  CAS  Google Scholar 

  23. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  24. Jesse, S., Mirman, B. & Kalinin, S. V. Resonance enhancement in piezoresponse force microscopy: mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006).

    Article  CAS  Google Scholar 

  25. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. & Rodriguez, B. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Article  Google Scholar 

  26. Jesse, S. et al. Band excitation in scanning probe microscopy: recognition and functional imaging. Ann. Rev. Phys. Chem. 65, 519–536 (2014).

    Article  CAS  Google Scholar 

  27. Ahmadi, M. et al. Exploring anomalous polarization dynamics in organometallic halide perovskites. Adv. Mater. 30, 1705298 (2018).

    Article  CAS  Google Scholar 

  28. Gannepalli, A., Yablon, D., Tsou, A. & Proksch, R. Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology 22, 355705 (2011).

    Article  CAS  Google Scholar 

  29. Collins, L. et al. Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals. Nanotechnology 25, 435402 (2014).

    Article  CAS  Google Scholar 

  30. Labuda, A. & Proksch, R. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope. Appl. Phys. Lett. 106, 253103 (2015).

    Article  CAS  Google Scholar 

  31. Hawash, Z. et al. Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility. J. Phys. Chem. Lett. 8, 3947–3953 (2017).

    Article  CAS  Google Scholar 

  32. Wirtz, T. et al. Towards secondary ion mass spectrometry on the helium ion microscope: An experimental and simulation based feasibility study with He+ and Ne+ bombardment. Appl. Phys. Lett. 101, 041601 (2012).

    Article  CAS  Google Scholar 

  33. Dowsett, D. & Wirtz, T. Co-registered in situ secondary electron and mass spectral imaging on the helium ion microscope demonstrated using lithium titanate and magnesium oxide nanoparticles. Anal. Chem. 89, 8957–8965 (2017).

    Article  CAS  Google Scholar 

  34. Gratia, P. et al. Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016).

    Article  CAS  Google Scholar 

  35. Gratia, P. et al. The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017).

    Article  CAS  Google Scholar 

  36. Glaser, T. et al. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Letters 6, 2913–2918 (2015).

    Article  CAS  Google Scholar 

  37. Watson, B. R. et al. Elucidation of perovskite film micro-orientations using two-photon total internal reflectance fluorescence microscopy. J. Phys. Chem. Lett. 6, 3283–3288 (2015).

    Article  CAS  Google Scholar 

  38. Täuber, D., Dobrovolsky, A., Camacho, R. & Scheblykin, I. G. Exploring the electronic band structure of organometal halide perovskite via photoluminescence anisotropy of individual nanocrystals. Nano Lett. 16, 5087–5094 (2016).

    Article  CAS  Google Scholar 

  39. Motta, C. et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6, 7026 (2015).

    Article  CAS  Google Scholar 

  40. Ziębińska, A., Rytz, D., Szot, K., Górny, M. & Roleder, K. Birefringence above T c in single crystals of barium titanate. J. Phys. Condens. Mat. 20, 142202 (2008).

    Article  CAS  Google Scholar 

  41. Banfi, G., Calvi, P. & Giulotto, E. Spontaneous and field-assisted transition in K0.984Li0.016TaO3: the polar pattern by birefringence and second-harmonic generation. Phys. Rev. B 51, 6231–6236 (1995).

    Article  CAS  Google Scholar 

  42. Hu, Y. H., Chan, H. M., Wen, Z. X. & Harmer, M. P. Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO3. J. Am. Ceram. Soc. 69, 594–602 (1986).

    Article  CAS  Google Scholar 

  43. Zhao, J. et al. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Sci. Bull. 62, 1163–1226 (2017).

    Article  Google Scholar 

  44. Wirtz, T., Philipp, P., Audinot, J., Dowsett, D. & Eswara, S. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy. Nanotechnology 26, 434001 (2015).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  48. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Mat 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  50. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  CAS  Google Scholar 

  51. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  52. Zhang, L. & Sit, P. H.-L. Ab initio study of interaction of water, hydroxyl radicals, and hydroxide ions with CH3NH3PbI3 and CH3NH3PbBr3 surfaces. J. Phys. Chem. C 119, 22370–22378 (2015).

    Article  CAS  Google Scholar 

  53. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy (Y.L., A.I., B.D. and O.S.O.). The research was partially sponsored by the Air Force Office of Scientific Research (AFOSR) under grant no. FA 9550-15-1-0064, AOARD (FA2386-15-1-4104), and the National Science Foundation CBET-1438181 (M.A. and B.H.) and supported by the University of Tennessee, Knoxville (B.R.W. and T.R.C.). This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Contributions

O.S.O., S.V.K., B.H., S.T.R, K.X., M.A., L.C. and Y.L. conceived the project and O.S.O. directed the experiments. Y.L. prepared the samples and performed the SEM measurements. Y.L. performed the scanning probe microscopy measurements with help from L.C. and the NSIR measurements with help from S.K. and A.I. R.P. developed the LDV–PFM and S.J. developed the band excitation scanning probe microscopy and analysis tools. S.K. performed the HIM–SIMS measurements with help from A.B. B.D. performed the TIRFM measurements and T.R.C. and B.R.W. helped to develop the TIRFM technique. J.H. and B.G.S. performed the DFT simulations. Y.L., L.C. and O.S.O. wrote the manuscript. All the authors contributed to the discussions.

Corresponding author

Correspondence to Olga S. Ovchinnikova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Collins, L., Proksch, R. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nature Mater 17, 1013–1019 (2018). https://doi.org/10.1038/s41563-018-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0152-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing