Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte

Abstract

Hydrogen transport in solids, applied in electrochemical devices such as fuel cells and electrolysis cells, is key to sustainable energy societies. Although using proton (H+) conductors is an attractive choice, practical conductivity at intermediate temperatures (200–400 °C), which would be ideal for most energy and chemical conversion applications, remains a challenge. Alternatively, hydride ions (H), that is, monovalent anions with high polarizability, can be considered a promising charge carrier that facilitates fast ionic conduction in solids. Here, we report a K2NiF4-type Ba–Li oxyhydride with an appreciable amount of hydrogen vacancies that presents long-range order at room temperature. Increasing the temperature results in the disappearance of the vacancy ordering, triggering a high and essentially temperature-independent H conductivity of more than 0.01 S cm–1 above 315 °C. Such a remarkable H conducting nature at intermediate temperatures is anticipated to be important for energy and chemical conversion devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures of as-synthesized K2NiF4-type oxyhydrides at room temperature.
Fig. 2: Structural phase transition of Ba1.75LiH2.7O0.9 prepared by ambient-pressure synthesis.
Fig. 3: Hydride conductivity of Ba1.75LiH2.7O0.9.
Fig. 4: Molecular-level H dynamics.
Fig. 5: Comparison of H conductivities of Ba1.75LiH2.7O0.9 and other materials.

Similar content being viewed by others

Data availability

The data presented in the current study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    Article  CAS  Google Scholar 

  2. Haile, S. M., Boysen, D. A., Chisholm, C. R. I. & Merle, R. B. Solid acids as fuel cell electrolytes. Nature 410, 910–913 (2001).

    Article  CAS  Google Scholar 

  3. Hogarth, W. H. J., Diniz da Costa, J. C. & Lu, G. Q. Solid acid membranes for high temperature (>140° C) proton exchange membrane fuel cells. J. Power Sources 142, 223–237 (2005).

    Article  CAS  Google Scholar 

  4. Li, Q., He, R., Jensen, J. O. & Bjerrum, N. J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 15, 4896–4915 (2003).

    Article  CAS  Google Scholar 

  5. Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001).

    Article  CAS  Google Scholar 

  6. Iwahara, H., Uchida, H., Ono, K. & Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988).

    Article  CAS  Google Scholar 

  7. Tao, S. & Irvine, J. T. S. Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. J. Solid State Chem. 180, 3493–3503 (2007).

    Article  CAS  Google Scholar 

  8. Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 125, 1–11 (1999).

    Article  CAS  Google Scholar 

  9. Yamaguchi, S. Large, soft, and polarizable hydride ions sneak around in an oxyhydride. Science 351, 1262–1263 (2016).

    Article  CAS  Google Scholar 

  10. Verbraeken, M. C., Cheung, C., Suard, E. & Irvine, J. T. S. High H ionic conductivity in barium hydride. Nat. Mater. 14, 95–100 (2015).

    Article  CAS  Google Scholar 

  11. Kobayashi, G. et al. Pure H conduction in oxyhydrides. Science 351, 1314–1317 (2016).

    Article  CAS  Google Scholar 

  12. Iwasaki, Y. et al. Synthesis, crystal structure, and ionic conductivity of hydride ion-conducting Ln2LiHO3 (Ln = La, Pr, Nd) oxyhydrides. J. Mater. Chem. A 6, 23457–23463 (2018).

    Article  CAS  Google Scholar 

  13. Matsui, N. et al. The effect of cation size on hydride-ion conduction in LnSrLiH2O2 (Ln = La, Pr, Nd, Sm, Gd) oxyhydrides. J. Mater. Chem. A 8, 24685–24694 (2020).

    Article  CAS  Google Scholar 

  14. Takeiri, F. et al. Ba2ScHO3: H conductive layered oxyhydride with H site selectivity. Inorg. Chem. 58, 4431–4436 (2019).

    Article  CAS  Google Scholar 

  15. Nawaz, H., Takeiri, F., Kuwabara, A., Yonemura, M. & Kobayashi, G. Synthesis and H conductivity of a new oxyhydride Ba2YHO3 with anion-ordered rock-salt layers. Chem. Commun. 56, 10373–10376 (2020).

    Article  CAS  Google Scholar 

  16. Fukui, K. et al. Characteristic fast H ion conduction in oxygen-substituted lanthanum hydride. Nat. Commun. 10, 2578 (2019).

    Article  Google Scholar 

  17. Ubukata, H. et al. Hydride conductivity in an anion-ordered fluorite structure LnHO with an enlarged bottleneck. Chem. Mater. 31, 7360–7366 (2019).

    Article  CAS  Google Scholar 

  18. Goodenough, J. B., Ruiz-Diaz, J. E. & Zhen, Y. S. Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr). Solid State Ion. 44, 21–31 (1990).

    Article  CAS  Google Scholar 

  19. Fjellvåg, Ø. S., Armstrong, J., Vajeeston, P. & Sjåstad, A. O. New insights into hydride bonding, dynamics, and migration in La2LiHO3 oxyhydride. J. Phys. Chem. Lett. 9, 353–358 (2018).

    Article  Google Scholar 

  20. Liu, X., Bjorheim, T. S. & Haugsrud, R. Formation of defects and their effects on hydride ion transport properties in a series of K2NiF4-type oxyhydrides. J. Mater. Chem. A 6, 1454–1461 (2018).

    Article  CAS  Google Scholar 

  21. Owens, B. B. & Argue, G. R. High-conductivity solid electrolytes: MAg4I5. Science 157, 308–310 (1967).

    Article  CAS  Google Scholar 

  22. Bradley, J. N. & Greene, P. D. Solids with high ionic conductivity in group 1 halide systems. Trans. Faraday Soc. 63, 424–430 (1967).

    Article  CAS  Google Scholar 

  23. Takahashi, T., Yamamoto, O., Yamada, S. & Hayashi, S. Solid-state ionics: high copper ion conductivity of the system CuCl ‐ CuI ‐ RbCl. J. Electrochem. Soc. 126, 1654 (1979).

    Article  CAS  Google Scholar 

  24. Dénès, G., Milova, G., Madamba, M. C. & Perfiliev, M. Structure and ionic transport of PbSnF4 superionic conductor. Solid State Ion. 86-88, 77–82 (1996).

    Article  Google Scholar 

  25. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  26. Watanabe, A. et al. Ambient pressure synthesis and H conductivity of LaSrLiH2O2. Electrochemistry 85, 88–92 (2017).

    Article  CAS  Google Scholar 

  27. Kawaguchi, S. et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017).

    Article  CAS  Google Scholar 

  28. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

    Article  CAS  Google Scholar 

  29. Oishi, R. et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. A 600, 94–96 (2009).

    Article  CAS  Google Scholar 

  30. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  31. Frick, B., Mamontov, E., van Eijck, L. & Seydel, T. Recent backscattering instrument developments at the ILL and SNS. Z. Phys. Chem. 224, 33–60 (2010).

    Article  CAS  Google Scholar 

  32. Kobayashi, G., Laurent, B., Bresser, D., Bernhard, F. & Sandrine, L. Study on the dynamics of hydride ion conduction in oxyhydrides. Institut Laue-Langevin (ILL) https://doi.org/10.5291/ILL-DATA.7-03-144 (2016).

  33. Frick, B., Combet, J. & van Eijck, L. New possibilities with inelastic fixed window scans and linear motor Doppler drives on high resolution neutron backscattering spectrometers. Nucl. Instrum. Methods Phys. Res. A 669, 7–13 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Precursory Research for Embryonic Science and Technology programme of the Japan Science and Technology Agency, no. JPMJPR1295 (G.K.); Grants-in-Aid nos 15H05497 (G.K.), 17H05492 (G.K.), 17H06145 (R.K.), 18H05516 (G.K.), 18H05518 (T.O.), 19H04710 (F.T.) and 20H02828 (G.K.) from the Japan Society for the Promotion of Science; and the Advanced Research Program for Energy and Environment Technologies from the New Energy and Industrial Technology Development Organization, no. 16823906 (R.K.). Synchrotron and neutron radiation experiments were approved by the Japan Synchrotron Radiation Research Institute (2016A1673, 2016B1767 and 2018B1099), the Neutron Scattering Program Advisory Committee of the Institute of Materials Structure Science, the High Energy Accelerator Research Organization (2014S06, 2014S10 and 2019S10) and the Institut Laue-Langevin (http://doi.ill.fr/10.5291/ILL-DATA.7-03-144). Electrochemical impedance spectroscopy measurements were supported by N. Higuchi (Toyo Corporation). The authors thank T. Yamamoto and T. Broux for their helpful suggestions regarding structural refinement. D.B. acknowledges the NanoSciences Programme of the Atomic Energy Commission (CEA, France) and the EU/CEA Enhanced Eurotalents Fellowship for financial support.

Author information

Authors and Affiliations

Authors

Contributions

G.K. conceived, supervised and designed the whole study. A.W., Y.I. and M.N. synthesized the material. F.T., A.W., K.O. and Y.I. carried out the electrochemical measurements. F.T., A.W., A.A., M.Y., T.S., K.I., T.O., T.K. and G.K. collected and refined the powder SXRD and ND data. D.B., S.L., B.F. and G.K. conducted the neutron quasi-elastic measurements and analysis. All authors discussed the results; F.T. and G.K. wrote the manuscript with discussions mainly with S.L., D.B., B.F. and R.K.

Corresponding author

Correspondence to Genki Kobayashi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Materials thanks John Irvine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Discussions 1–4 and Tables 1–4.

Source data

Source Data Fig. 1

Source data for graphs in Fig. 1.

Source Data Fig. 2

Source data for graphs in Fig. 2.

Source Data Fig. 3

Source data for graphs in Fig. 3.

Source Data Fig. 4

Source data for graphs in Fig. 4.

Source Data Fig. 5

Source data for graphs in Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeiri, F., Watanabe, A., Okamoto, K. et al. Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nat. Mater. 21, 325–330 (2022). https://doi.org/10.1038/s41563-021-01175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01175-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing