Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte

Abstract

Plasmodium falciparum exports hundreds of virulence proteins within infected erythrocytes, a process that requires cleavage of a pentameric motif called Plasmodium export element or vacuolar transport signal by the endoplasmic reticulum (ER)-resident protease plasmepsin V. We identified plasmepsin V-binding proteins that form a unique interactome required for the translocation of effector cargo into the parasite ER. These interactions are functionally distinct from the Sec61–signal peptidase complex required for the translocation of proteins destined for the classical secretory pathway. This interactome does not involve the signal peptidase (SPC21) and consists of PfSec61, PfSPC25, plasmepsin V and PfSec62, which is an essential component of the post-translational ER translocon. Together, they form a distinct portal for the recognition and translocation of a large subset of Plasmodium export element effector proteins into the ER, thereby remodelling the infected erythrocyte that is required for parasite survival and pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identifying PfSPC25 as an interacting partner of PMV.
Fig. 2: PfSPC25 is required for parasite growth and export of PEXEL proteins.
Fig. 3: Dissecting the PMV–PfSPC25 interaction.
Fig. 4: Characterization of the signal peptidase catalytic subunit PfSPC21.
Fig. 5: A mutant PfEMP3 PEXEL protein causes an accumulation of co-expressed PEXEL proteins.
Fig. 6: PfSec62 regulates the ER import of distinct PEXEL proteins.

Similar content being viewed by others

References

  1. The World Malaria Report (WHO, 2015); http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.

  2. Cowman, A. F. et al. Malaria: biology and disease. Cell 167, 610–624 (2016).

    Article  CAS  Google Scholar 

  3. Maier, A. G. et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48–61 (2008).

    Article  CAS  Google Scholar 

  4. Marti, M. et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306, 1930–1933 (2004).

    Article  CAS  Google Scholar 

  5. Hiller, N. L. et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306, 1934–1937 (2004).

    Article  CAS  Google Scholar 

  6. Sargeant, T. et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12 (2006).

    Article  Google Scholar 

  7. Chang, H. H. et al. N-terminal processing of proteins exported by malaria parasites. Mol. Biochem. Parasitol. 160, 107–115 (2008).

    Article  CAS  Google Scholar 

  8. Boddey, J. A. et al. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10, 285–299 (2009).

    Article  CAS  Google Scholar 

  9. Boddey, J. A. et al. An aspartyl protease directs malaria effector proteins to the host cell. Nature 463, 627–631 (2010).

    Article  CAS  Google Scholar 

  10. Russo, I. et al. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463, 632–636 (2010).

    Article  CAS  Google Scholar 

  11. Boddey, J. A. et al. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nat. Commun. 7, 10470 (2016).

    Article  CAS  Google Scholar 

  12. Sleebs, B. E. et al. Inhibition of plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol. 12, e1001897 (2014).

    Article  Google Scholar 

  13. Hodder, A. N. et al. Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat. Struct. Mol. Biol. 22, 590–596 (2015).

    Article  CAS  Google Scholar 

  14. Przyborski, J.M., Nyboer, B., Lanzer, M. Ticket to ride: Export of proteins to the P. falciparum infected erythrocyte. Mol. Micro. 101, 1–11 (2016).

    Article  CAS  Google Scholar 

  15. Gilmore, R. The protein translocation apparatus of the rough endoplasmic reticulum, its associated proteins, and the mechanism of translocation. Curr. Opin. Cell Biol. 3, 580–584 (1991).

    Article  CAS  Google Scholar 

  16. Marapana, D. S. et al. Malaria parasite signal peptide peptidase is an ER-resident protease required for growth but not for invasion. Traffic 13, 1457–1465 (2012).

    Article  CAS  Google Scholar 

  17. Harbut, M. B. et al. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc. Natl Acad. Sci. USA 109, 21486–21491 (2012).

    Article  CAS  Google Scholar 

  18. Shelness, G. S., Kanwar, Y. S. & Blobel, G. cDNA-derived primary structure of the glycoprotein component of canine microsomal signal peptidase complex. J. Biol. Chem. 263, 17063–17070 (1988).

    CAS  Google Scholar 

  19. Prommana, P. et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS ONE 8, e73783 (2013).

    Article  CAS  Google Scholar 

  20. Elsworth, B. et al. PTEX is an essential nexus for protein export in malaria parasites. Nature 511, 587–591 (2014).

    Article  CAS  Google Scholar 

  21. de Koning-Ward, T. F. et al. A newly discovered protein export machine in malaria parasites. Nature 459, 945–949 (2009).

    Article  CAS  Google Scholar 

  22. Riglar, D. T. et al. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes. Nat. Commun. 4, 1415 (2013).

    Article  Google Scholar 

  23. Aikawa, M. et al. Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites. Exp. Parasitol. 71, 326–329 (1990).

    Article  CAS  Google Scholar 

  24. Dixon, M. W. et al. Targeting of the ring exported protein 1 to the Maurer’s clefts is mediated by a two-phase process. Traffic 9, 1316–1326 (2008).

    Article  CAS  Google Scholar 

  25. Blisnick, T. et al. Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. Parasitol. 111, 107–121 (2000).

    Article  CAS  Google Scholar 

  26. Boddey, J. A. & Cowman, A. F. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu. Rev. Microbiol. 67, 243–269 (2013).

    Article  CAS  Google Scholar 

  27. Kalies, K. U., Rapoport, T. A. & Hartmann, E. The β subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J. Cell Biol. 141, 887–894 (1998).

    Article  CAS  Google Scholar 

  28. Antonin, W., Meyer, H. A. & Hartmann, E. Interactions between Spc2p and other components of the endoplasmic reticulum translocation sites of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 275, 34068–34072 (2000).

    Article  CAS  Google Scholar 

  29. Kalies, K. U. & Hartmann, E. Membrane topology of the 12- and the 25-kDa subunits of the mammalian signal peptidase complex. J. Biol. Chem. 271, 3925–3929 (1996).

    Article  CAS  Google Scholar 

  30. Evans, E. A., Gilmore, R. & Blobel, G. Purification of microsomal signal peptidase as a complex. Proc. Natl Acad. Sci. USA 83, 581–585 (1986).

    Article  CAS  Google Scholar 

  31. Rothblatt, J. A. et al. Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J. Cell Biol. 109, 2641–2652 (1989).

    Article  CAS  Google Scholar 

  32. Ciu, J. et al. Competitive inhibition of the endoplasmic reticulum signal peptidase by non-cleavable mutant preprotein cargos. J. Biol. Chem. 290, 28131–28140 (2015).

    Article  Google Scholar 

  33. Deshaies, R. J. & Schekman, R. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J. Cell Biol. 109, 2653–2664 (1989).

    Article  CAS  Google Scholar 

  34. Mullins, C. et al. Structurally related Spc1p and Spc2p of yeast signal peptidase complex are functionally distinct. J. Biol. Chem. 271, 29094–29099 (1996).

    Article  CAS  Google Scholar 

  35. Nunn, D. N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl Acad. Sci. USA 88, 3281–3285 (1991).

    Article  CAS  Google Scholar 

  36. Tokunaga, M. et al. Prolipoprotein signal peptidase in Escherichia coli is distinct from the M13 procoat protein signal peptidase. J. Biol. Chem. 257, 9922–9925 (1982).

    CAS  Google Scholar 

  37. Spiller, M. P. & Stirling, C. J. Preferential targeting of a signal recognition particle-dependent precursor to the Ssh1p translocon in yeast. J. Biol. Chem. 286, 21953–21960 (2011).

    Article  CAS  Google Scholar 

  38. Feltcher, M. E. & Braunstein, M. Emerging themes in SecA2-mediated protein export. Nat. Rev. Microbiol. 10, 779–789 (2012).

    Article  CAS  Google Scholar 

  39. Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR–Cas9 system. Nat. Biotechnol. 32, 819–821 (2014).

    Article  CAS  Google Scholar 

  40. Tatebe, K. Combining multiple averaged data points and their errors (White paper, 2005).

  41. Prieto, D. A., Ye, X. & Veenstra, T. D. Proteomic analysis of traumatic brain injury: the search for biomarkers. Expert Rev. Proteomics 5, 283–291 (2008).

    Article  CAS  Google Scholar 

  42. Nesvizhskii, A. I. et al. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  43. Searle, B. C. Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10, 1265–1269 (2010).

    Article  CAS  Google Scholar 

  44. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  45. Nguyen, H. D., Wood, I. A. & Hill, M. M. A robust permutation test for quantitative SILAC proteoics experiments. JIOmics 2, 80–93 (2012).

    Google Scholar 

  46. Wisniewski, J. R., Zougman, A. & Mann, M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678 (2009).

    Article  CAS  Google Scholar 

  47. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016).

    Article  CAS  Google Scholar 

  48. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  Google Scholar 

  49. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  Google Scholar 

  50. Keilhauer, E. C., Hein, M. Y. & Mann, M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol. Cell. Proteomics 14, 120–135 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Red Cross Blood Service (Melbourne, Victoria, Australia) for the supply of donor blood for our cell culture. This work was supported by the NHMRC of Australia and the Victorian State Government Operational Infrastructure Support and the Australian Government NHMRC IRIISS. A.F.C. is a Howard Hughes International Scholar. M.P. was supported by the EMBO Long-Term Fellowship ALTF 793-2016.

Author information

Authors and Affiliations

Authors

Contributions

D.S.M. conceived and performed the experiments, acquired and analysed the data and wrote the manuscript. L.F.D. conceived and performed the experiments, acquired and analysed the data and edited the manuscript. J.J.S. conceived and performed the experiments, acquired and analysed the data and edited the manuscript. T.N. conceived and performed the experiments, acquired and analysed the data and edited the manuscript. T.T. performed the experiments, acquired and analysed the data and edited the manuscript. M.P. performed the experiments, acquired and analysed the data and edited the manuscript. B.K.D. conceived and performed the experiments, acquired and analysed the data and edited the manuscript. B.S.C. conceived the experiments, analysed the data and edited the manuscript. P.R.G. conceived the experiments, analysed the data and edited the manuscript. A.I.W. conceived and performed the experiments, acquired and analysed the data and edited the manuscript. J.A.B. conceived the experiments, analysed the data and edited the manuscript. A.F.C. conceived the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Alan F. Cowman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Table 2 and Supplementary Table 5.

Reporting Summary

Supplementary Table 1

Supplementary Table 3

Supplementary Table 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marapana, D.S., Dagley, L.F., Sandow, J.J. et al. Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat Microbiol 3, 1010–1022 (2018). https://doi.org/10.1038/s41564-018-0219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0219-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing