Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread

Abstract

Plasma membrane integrity is essential for the viability of eukaryotic cells. In response to bacterial pore-forming toxins, disrupted regions of the membrane are rapidly repaired. However, the pathways that mediate plasma membrane repair are unclear. Here we show that autophagy-related (ATG) protein ATG16L1 and its binding partners ATG5 and ATG12 are required for plasma membrane repair through a pathway independent of macroautophagy. ATG16L1 is required for lysosome fusion with the plasma membrane and blebbing responses that promote membrane repair. ATG16L1 deficiency causes accumulation of cholesterol in lysosomes that contributes to defective membrane repair. Cell-to-cell spread by Listeria monocytogenes requires membrane damage by the bacterial toxin listeriolysin O, which is restricted by ATG16L1-dependent membrane repair. Cells harbouring the ATG16L1 T300A allele associated with inflammatory bowel disease were also found to accumulate cholesterol and be defective in repair, linking a common inflammatory disease to plasma membrane integrity. Thus, plasma membrane repair could be an important therapeutic target for the treatment of bacterial infections and inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ATG16L1 contributes to toxin resistance by a pathway distinct from canonical autophagy.
Fig. 2: ATG16L1 contributes to toxin resistance by promoting plasma membrane repair.
Fig. 3: ATG16L1 promotes lysosome exocytosis and plasma membrane bleb formation.
Fig. 4: ATG16L1 deficiency causes intracellular cholesterol accumulation.
Fig. 5: Cholesterol accumulation in ATG16L1-deficient cells impairs membrane repair and lysosome exocytosis.
Fig. 6: ATG16L1 limits cell-to-cell spread of Lm by promoting lysosome exocytosis and plasma membrane repair.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Dal Peraro, M. & van der Goot, F. G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14, 77–92 (2016).

    Article  Google Scholar 

  2. Babiychuk, E. B. & Draeger, A. Defying death: cellular survival strategies following plasmalemmal injury by bacterial toxins. Semin. Cell. Dev. Biol. 45, 39–47 (2015).

    Article  CAS  Google Scholar 

  3. Cassidy, S. K. & O’Riordan, M. X. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel) 5, 618–636 (2013).

    Article  CAS  Google Scholar 

  4. Osborne, S. E. & Brumell, J. H. Listeriolysin O: from bazooka to Swiss army knife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160222 (2017).

    Article  Google Scholar 

  5. Birmingham, C. L. et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451, 350–354 (2008).

    Article  CAS  Google Scholar 

  6. Beauregard, K. E., Lee, K. D., Collier, R. J. & Swanson, J. A. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186, 1159–1163 (1997).

    Article  CAS  Google Scholar 

  7. Lebreton, A., Stavru, F. & Cossart, P. Organelle targeting during bacterial infection: insights from Listeria. Trends. Cell Biol. 25, 330–338 (2015).

    Article  CAS  Google Scholar 

  8. Czuczman, M. A. et al. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature 509, 230–234 (2014).

    Article  CAS  Google Scholar 

  9. Cassidy, S. K. et al. Membrane damage during Listeria monocytogenes infection triggers a caspase-7 dependent cytoprotective response. PLoS Pathog. 8, e1002628 (2012).

    Article  CAS  Google Scholar 

  10. Pasternak, C. A. Effect of pore formers on intracellular calcium. Cell Calcium 7, 387–397 (1986).

    Article  CAS  Google Scholar 

  11. Jimenez, A. J. & Perez, F. Plasma membrane repair: the adaptable cell life-insurance. Curr. Opin. Cell Biol. 47, 99–107 (2017).

    Article  CAS  Google Scholar 

  12. Babiychuk, E. B., Monastyrskaya, K., Potez, S. & Draeger, A. Blebbing confers resistance against cell lysis. Cell Death Differ. 18, 80–89 (2011).

    Article  CAS  Google Scholar 

  13. Hagmann, J., Burger, M. M. & Dagan, D. Regulation of plasma membrane blebbing by the cytoskeleton. J. Cell. Biochem. 73, 488–499 (1999).

    Article  CAS  Google Scholar 

  14. Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).

    Article  CAS  Google Scholar 

  15. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  Google Scholar 

  16. Ktistakis, N. T. & Tooze, S. A. Digesting the expanding mechanisms of autophagy. Trends. Cell Biol. 26, 624–635 (2016).

    Article  CAS  Google Scholar 

  17. Gerstenmaier, L. et al. The autophagic machinery ensures nonlytic transmission of mycobacteria. Proc. Natl Acad. Sci. USA 112, E687–E692 (2015).

    Article  CAS  Google Scholar 

  18. Gonzalez, M. R. et al. Pore-forming toxins induce multiple cellular responses promoting survival. Cell Microbiol. 13, 1026–1043 (2011).

    Article  CAS  Google Scholar 

  19. Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell. Host. Microbe. 14, 216–224 (2013).

    Article  CAS  Google Scholar 

  20. Fadeel, B. & Xue, D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44, 264–277 (2009).

    Article  CAS  Google Scholar 

  21. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  Google Scholar 

  22. Kuballa, P., Huett, A., Rioux, J. D., Daly, M. J. & Xavier, R. J. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE 3, e3391 (2008).

    Article  Google Scholar 

  23. Raju, D. et al. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142, 1160–1171 (2012).

    Article  CAS  Google Scholar 

  24. Sampath, V. et al. A functional ATG16L1 (T300A) variant is associated with necrotizing enterocolitis in premature infants. Pediatr. Res. 81, 582–588 (2016).

    Article  Google Scholar 

  25. Burada, F. et al. ATG16L1 T300A polymorphism is correlated with gastric cancer susceptibility. Pathol. Oncol. Res. 22, 317–322 (2016).

    Article  CAS  Google Scholar 

  26. Fujita, N. et al. Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J. Biol. Chem. 284, 32602–32609 (2009).

    Article  CAS  Google Scholar 

  27. Wolfmeier, H. et al. Active release of pneumolysin prepores and pores by mammalian cells undergoing a Streptococcus pneumoniae attack. Biochim. Biophys. Acta 1860, 2498–2509 (2016).

    Article  CAS  Google Scholar 

  28. Maekawa, M. & Fairn, G. D. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell. Sci. 128, 1422–1433 (2015).

    Article  CAS  Google Scholar 

  29. Boucher, E. & Mandato, C. A. Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochim. Biophys. Acta 1853, 2649–2661 (2015).

    Article  CAS  Google Scholar 

  30. Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014).

    Article  Google Scholar 

  31. Andrews, N. W., Almeida, P. E. & Corrotte, M. Damage control: cellular mechanisms of plasma membrane repair. Trends. Cell Biol. 24, 734–742 (2014).

    Article  CAS  Google Scholar 

  32. Corrotte, M., Castro-Gomes, T., Koushik, A. B. & Andrews, N. W. Approaches for plasma membrane wounding and assessment of lysosome-mediated repair responses. Methods Cell Biol. 126, 139–158 (2015).

    Article  CAS  Google Scholar 

  33. Tinevez, J. Y. et al. Role of cortical tension in bleb growth. Proc. Natl Acad. Sci. USA 106, 18581–18586 (2009).

    Article  CAS  Google Scholar 

  34. Anishkin, A. & Kung, C. Stiffened lipid platforms at molecular force foci. Proc. Natl Acad. Sci. USA 110, 4886–4892 (2013).

    Article  CAS  Google Scholar 

  35. Xu, J. et al. Mechanism of polarized lysosome exocytosis in epithelial cells. J. Cell. Sci. 125, 5937–5943 (2012).

    Article  CAS  Google Scholar 

  36. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell. Metab. 13, 655–667 (2011).

    Article  CAS  Google Scholar 

  37. Lu, F. et al. Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection. eLife 4, e12177 (2015).

    Article  Google Scholar 

  38. Zanotti, I. et al. The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J. Lipid Res. 49, 954–960 (2008).

    Article  CAS  Google Scholar 

  39. Lamason, R. L. & Welch, M. D. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr. Opin. Microbiol. 35, 48–57 (2016).

    Article  Google Scholar 

  40. Grundling, A., Gonzalez, M. D. & Higgins, D. E. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J. Bacteriol. 185, 6295–6307 (2003).

    Article  Google Scholar 

  41. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell. Host. Microbe. 4, 458–469 (2008).

    Article  CAS  Google Scholar 

  42. Pavel, M. & Rubinsztein, D. C. Mammalian autophagy and the plasma membrane. FEBS J. 284, 672–679 (2017).

    Article  CAS  Google Scholar 

  43. Murrow, L., Malhotra, R. & Debnath, J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300–310 (2015).

    Article  CAS  Google Scholar 

  44. Maurer, K. et al. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe. 17, 429–440 (2015).

    Article  CAS  Google Scholar 

  45. DeSelm, C. J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell. 21, 966–974 (2011).

    Article  CAS  Google Scholar 

  46. Mrschtik, M. & Ryan, K. M. Lysosomal proteins in cell death and autophagy. FEBS J. 282, 1858–1870 (2015).

    Article  CAS  Google Scholar 

  47. Huynh, K. K., Gershenzon, E. & Grinstein, S. Cholesterol accumulation by macrophages impairs phagosome maturation. J. Biol. Chem. 283, 35745–35755 (2008).

    Article  CAS  Google Scholar 

  48. Lebrand, C. et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–1300 (2002).

    Article  CAS  Google Scholar 

  49. Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008).

    Article  CAS  Google Scholar 

  50. Meyer-Morse, N. et al. Listeriolysin O is necessary and sufficient to induce autophagy during Listeria monocytogenes infection. PLoS ONE 5, e8610 (2010).

    Article  Google Scholar 

  51. Bishop, D. K. & Hinrichs, D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol. 139, 2005–2009 (1987).

    CAS  PubMed  Google Scholar 

  52. Jones, S. & Portnoy, D. A. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect. Immun. 62, 5608–5613 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell. Biol. 150, 527–538 (2000).

    Article  CAS  Google Scholar 

  54. Shen, A. & Higgins, D. E. The 5’ untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol. Microbiol. 57, 1460–1473 (2005).

    Article  CAS  Google Scholar 

  55. Gelber, S. E., Aguilar, J. L., Lewis, K. L. & Ratner, A. J. Functional and phylogenetic characterization of Vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J. Bacteriol. 190, 3896–3903 (2008).

    Article  CAS  Google Scholar 

  56. Wolfmeier, H. et al. -dependent repair of pneumolysin pores: a new paradigm for host cellular defense against bacterial pore-forming toxins. Biochim. Biophys. Acta 1853, 2045–2054 (2015).

    Article  CAS  Google Scholar 

  57. Rescher, U., Zobiack, N. & Gerke, V. Intact -binding sites are required for targeting of annexin 1 to endosomal membranes in living HeLa cells. J. Cell. Sci. 113(Pt 22), 3931–3938 (2000).

    CAS  PubMed  Google Scholar 

  58. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  59. Puri, C., Renna, M., Bento, C. F., Moreau, K. & Rubinsztein, D. C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285–1299 (2013).

    Article  CAS  Google Scholar 

  60. Munsie, L. N., Caron, N., Desmond, C. R. & Truant, R. Lifeact cannot visualize some forms of stress-induced twisted F-actin. Nat. Methods 6, 317 (2009).

    Article  CAS  Google Scholar 

  61. Conway, K. L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1347–1357 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to E.A. Creasey, A. Draeger, V. Gerke, S. Grinstein, A. Hostettles, N. Mizushima, D. Portnoy, A. Ratner, D. Rubinsztein and R. Truant for providing reagents and advice, and to the SickKids Hospital Flow and Mass Cytometry Facility for help with flow cytometry. J.H.B. holds the Pitblado Chair in Cell Biology. Infrastructure for the Brumell Laboratory was provided by a John Evans Leadership Fund grant from the Canadian Foundation for Innovation and the Ontario Innovation Trust. S.E.O. and N.M. were supported by a fellowship from the Research Training Centre at the Hospital for Sick Children. S.E.O. and J.H. were supported by CIHR fellowships. D.B. was supported by the Dutch Digestive Foundation. D.A.A. and M.A.C. were supported by a studentship from the Research Training Committee at the Hospital for Sick Children and an NSERC CGS-M scholarship. M.A.C. was supported by a University of Toronto Open Fellowship. M.C. was supported by an NSERC PGS-D scholarship and a CIHR Training Fellowship (no. TGF-53877). This work was supported by operating grants from The Arthritis Society of Canada (grant no. RG11/013) and the Canadian Institutes of Health Research (grant nos. MOP#97756, PJT#148668 and FDN154329).

Author information

Authors and Affiliations

Authors

Contributions

J.H.B., J.M.J.T., N.M., S.E.O. J.H. and D.E.H. designed the experiments. J.M.J.T., N.M., S.E.O., D.A.A., D.D., R.L., D.B., J.M.v.R, M.A.C., M.C., E.C. and A.M.W. performed the experiments. C.M.Y., R.J.X., D.M., F.R., T.Y., J.D., G.D.F., B.R., P.K.K. and A.M.M. contributed reagents and consultations.

Corresponding author

Correspondence to John H. Brumell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Methods, Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J.M.J., Mellouk, N., Osborne, S.E. et al. An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nat Microbiol 3, 1472–1485 (2018). https://doi.org/10.1038/s41564-018-0293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0293-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology