Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria

A Publisher Correction to this article was published on 04 January 2023

This article has been updated

Abstract

The division and cell wall (dcw) gene cluster in Bacteria comprises 17 genes encoding key steps in peptidoglycan synthesis and cytokinesis. To understand the origin and evolution of this cluster, we analysed its presence in over 1,000 bacterial genomes. We show that the dcw gene cluster is strikingly conserved in both gene content and gene order across all Bacteria and has undergone only a few rearrangements in some phyla, potentially linked to cell envelope specificities, but not directly to cell shape. A large concatenation of the 12 most conserved dcw cluster genes produced a robust tree of Bacteria that is largely consistent with recent phylogenies based on frequently used markers. Moreover, evolutionary divergence analyses show that the dcw gene cluster offers advantages in defining high-rank taxonomic boundaries and indicate at least two main phyla in the Candidate Phyla Radiation (CPR) matching a sharp dichotomy in dcw gene cluster arrangement. Our results place the origin of the dcw gene cluster in the Last Bacterial Common Ancestor and show that it has evolved vertically for billions of years, similar to major cellular machineries such as the ribosome. The strong phylogenetic signal, combined with conserved genomic synteny at large evolutionary distances, makes the dcw gene cluster a robust alternative set of markers to resolve the ever-growing tree of Bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteins involved in PG synthesis and cell division and the dcw genomic locus.
Fig. 2: Conservation of the dcw cluster across Bacteria.
Fig. 3: Dcw gene cluster in selected taxa of the Firmicutes displaying different phenotypes.
Fig. 4: Scenario for the evolution of the dcw cluster.
Fig. 5: Organization of the dcw cluster across the CPR.
Fig. 6: Phylogeny of Bacteria based on the dcw cluster and comparison with frequently used sets of markers.

Similar content being viewed by others

Data availability

All data used to produce our results are provided as supporting data and can be found in ref. 19 (https://doi.org/10.17632/4y5mzppzmb.1).

Code availability

All code used to produce our results can be found in ref. 19 (https://doi.org/10.17632/4y5mzppzmb.1).

Change history

References

  1. Miyakawa, T., Matsuzawa, H., Matsuhashi, M. & Sugino, Y. Cell wall peptidoglycan mutants of Escherichia coli K-12: existence of two clusters of genes, mra and mrb, for cell wall peptidoglycan biosynthesis. J. Bacteriol. 112, 950–958 (1972).

    Article  CAS  Google Scholar 

  2. Ayala, J. A., Garrido, T., De Pedro, M. A. & Vicente, M. Molecular biology of bacterial septation. New Compr. Biochem. 27, 73–101 (1994).

    Article  CAS  Google Scholar 

  3. Francis, F., Ramirez-Arcos, S., Salimnia, H., Victor, C. & Dillon, J. A. R. Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 251, 141–151 (2000).

    Article  CAS  Google Scholar 

  4. Real, G. & Henriques, A. O. Localization of the Bacillus subtilis murB gene within the dcw cluster is important for growth and sporulation. J. Bacteriol. 188, 1721–1732 (2006).

    Article  CAS  Google Scholar 

  5. Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).

    Article  CAS  Google Scholar 

  6. Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  Google Scholar 

  7. Sham, L.-T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    Article  CAS  Google Scholar 

  8. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    Article  CAS  Google Scholar 

  9. Matsuzawa, H. et al. Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. J. Bacteriol. 171, 558–560 (1989).

    Article  CAS  Google Scholar 

  10. Pende, N. et al. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nat. Commun. 12, 3214 (2021).

    Article  CAS  Google Scholar 

  11. Boes, A., Olatunji, S., Breukink, E. & Terrak, M. Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio 10, e01912–e01918 (2019).

    Article  CAS  Google Scholar 

  12. Mingorance, J. & Tamames, J. in Molecules in Time and Space (eds Vicente, M., et al.) Ch. 13 (Springer, 2004).

  13. Nikolaichik, Y. A. & Donachie, W. D. Conservation of gene order amongst cell wall and cell division genes in Eubacteria, and ribosomal genes in Eubacteria and Eukaryotic organelles. Genetica 108, 1–7 (2000).

    Article  CAS  Google Scholar 

  14. Vicente, M., Gomez, M. J. & Ayala, J. A. Regulation of transcription of cell division genes in the Eschericia coli dcw cluster. Cell. Mol. Life Sci. 54, 317–324 (1998).

    Article  CAS  Google Scholar 

  15. Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235, 209–220 (1994).

    Article  CAS  Google Scholar 

  16. Real, G., Autret, S., Harry, E. J., Errington, J. & Henriques, A. O. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Mol. Microbiol. 55, 349–367 (2005).

    Article  CAS  Google Scholar 

  17. Tamames, J., González-Moreno, M., Mingorance, J., Valencia, A. & Vicente, M. Bringing gene order into bacterial shape. Trends Genet. 17, 124–126 (2001).

    Article  CAS  Google Scholar 

  18. Mingorance, J., Tamames, J. & Vicente, M. Genomic channeling in bacterial cell division. J. Mol. Recognit. 17, 481–487 (2004).

    Article  CAS  Google Scholar 

  19. Megrian, D., Taib, N., Jaffe, A., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall (dcw) gene cluster across Bacteria. Mendeley Data https://doi.org/10.17632/4y5mzppzmb.1 (2022).

  20. Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).

    Article  CAS  Google Scholar 

  21. Taib, N. et al. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4, 1661–1672 (2020).

    Article  Google Scholar 

  22. Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature https://doi.org/10.1038/s41586-022-04834-7 (2022).

  23. Rohs, P. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 315–336 (2021).

    Article  Google Scholar 

  24. Antunes, A. et al. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J. Bacteriol. 190, 3580–3587 (2008).

    Article  CAS  Google Scholar 

  25. Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144, 324–333 (1986).

    Article  CAS  Google Scholar 

  26. Pilhofer, M. et al. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190, 3192–3202 (2008).

    Article  CAS  Google Scholar 

  27. Jeske, O. et al. Planctomycetes do possess a peptidoglycan cell wall. Nat. Commun. 6, 7116 (2015).

    Article  CAS  Google Scholar 

  28. Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).

    Article  CAS  Google Scholar 

  29. Pilhofer, M. et al. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat. Commun. 4, 1–7 (2013).

    Article  Google Scholar 

  30. Van Teeseling, M. C. F. et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6, 1–6 (2015).

    Article  Google Scholar 

  31. Rivas-Marín, E. & Devos, D. P. The paradigms they are a-changin’: past, present and future of PVC bacteria research. A. Van Leeuw. 111, 785–799 (2018).

    Article  Google Scholar 

  32. Rivas-Marín, E., Canosa, I. & Devos, D. P. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Planctomycetesverrucomicrobia-Chlamydiae superphylum. Front. Microbiol. 7, 1–11 (2016).

    Article  Google Scholar 

  33. Hoiczyk, E. & Hansel, A. Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182, 1191–1199 (2000).

    Article  CAS  Google Scholar 

  34. Huber, R. et al. Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340–351 (1992).

    Article  Google Scholar 

  35. L’Haridon, S. et al. Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 701–711 (1998).

    Article  Google Scholar 

  36. Stohr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M. Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int. J. Syst. Evol. Microbiol. 51, 1853–1862 (2001).

    Article  CAS  Google Scholar 

  37. Liu, Y., Hidaka, E., Kaneko, Y., Akamatsu, T. & Ota, H. Ultrastructure of Helicobacter pylori in human gastric mucosa and H. pylori-infected human gastric mucosa using transmission electron microscopy and the high-pressure freezing-freeze substitution technique. J. Gastroenterol. 41, 569–574 (2006).

    Article  Google Scholar 

  38. Müller, A. et al. Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. MicrobiologyOpen 3, 702–710 (2014).

    Article  Google Scholar 

  39. Porcelli, I., Reuter, M., Pearson, B. M., Wilhelm, T. & van Vliet, A. H. M. Parallel evolution of genome structure and transÿcriptional landscape in the Epsilonproteobacteria. BMC Genom. 14, 616 (2013).

    Article  CAS  Google Scholar 

  40. Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

    Article  CAS  Google Scholar 

  41. Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).

    Article  CAS  Google Scholar 

  42. Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

    Article  CAS  Google Scholar 

  43. Koch, A. L. Were Gram-positive rods the first bacteria? Trends Microbiol. 11, 166–170 (2003).

    Article  CAS  Google Scholar 

  44. Siefert’t, J. L. & Fox, G. E. Phylogenetic mapping of bacterial morphology. Microbiology 144, 2803–2808 (1998).

    Article  Google Scholar 

  45. Yulo, P. & Hendrickson, H. L. The evolution of spherical cell shape; progress and perspective. Biochem. Soc. Trans. 47, 1621–1634 (2019).

    Article  CAS  Google Scholar 

  46. Luef, B. et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6, 1–8 (2015).

    Article  Google Scholar 

  47. Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).

    Article  CAS  Google Scholar 

  48. Jaffe, A. L., Castelle, C. J., Matheus Carnevali, P. B., Gribaldo, S. & Banfield, J. F. The rise of diversity in metabolic platforms across the candidate phyla radiation. BMC Biol. 18, 1–15 (2020).

    Article  Google Scholar 

  49. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  50. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  Google Scholar 

  51. Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181 (2015).

    Article  CAS  Google Scholar 

  52. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  Google Scholar 

  53. Smith, M. R. Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees. Bioinformatics 36, 5007–5013 (2020).

    Article  CAS  Google Scholar 

  54. Smith, M. R. Quartet: comparison of phylogenetic trees using quartet and bipartition measures. Zenodo https://doi.org/10.5281/zenodo.3630138 (2019).

  55. Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).

    Article  Google Scholar 

  56. Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 1–83 (2006).

    Article  Google Scholar 

  57. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    Article  CAS  Google Scholar 

  58. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article  CAS  Google Scholar 

  59. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article  CAS  Google Scholar 

  60. Watanabe, H., Mori, H., Itoh, T. & Gojobori, T. Genome plasticity as a paradigm of eubacteria evolution. J. Mol. Evol. 44, S57–S64 (1997).

    Article  CAS  Google Scholar 

  61. Léonard, R. R. et al. Was the last bacterial common ancestor a monoderm after all? Genes 13, 376 (2022).

    Article  Google Scholar 

  62. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998).

    Article  CAS  Google Scholar 

  63. Lloyd, K. G. & Tahon, G. Science depends on nomenclature, but nomenclature is not science. Nat. Rev. Micro. https://doi.org/10.1038/s41579-022-00684-2 (2022).

  64. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 11, 431 (2010).

    Article  Google Scholar 

  65. Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 9, e110726 (2014).

    Article  Google Scholar 

  66. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  Google Scholar 

  67. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).

    Article  Google Scholar 

  68. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  Google Scholar 

  69. Ishikawa, S. A., Zhukova, A., Iwasaki, W. & Gascuel, O. A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 36, 2069–2085 (2019).

    Article  CAS  Google Scholar 

  70. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  Google Scholar 

  71. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  Google Scholar 

  72. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article  CAS  Google Scholar 

  73. Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    Article  CAS  Google Scholar 

  74. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    CAS  Google Scholar 

  75. Vos, P. et al. (eds) Bergey’s Manual of Systematic Bacteriology Vol. 3 (Springer Science & Business Media, 2011).

  76. Antunes, L. C. et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. eLife 5, e14589 (2016).

    Article  Google Scholar 

  77. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the French National Research Agency (ANR) (grant no. Fir-OM ANR-16-CE12-0010), the Institut Pasteur ‘Programmes Transversaux de Recherche’ (grant no. PTR 39-16), the French government’s Investissement d’Avenir Program, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID) and Moore Foundation (grant no. 71785). D.M. was supported by the Pasteur-Paris University (PPU) International PhD Program. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This work used the computational and storage services (TARS cluster) provided by the IT department at Institut Pasteur, Paris. We thank the Innovative Genomics Institute at UC Berkeley. We also thank C. Rodrigues at the University of Warwick for discussions about the B. subtilis dcw cluster.

Author information

Authors and Affiliations

Authors

Contributions

D.M., N.T. and A.L.J. performed the analyses. N.T. and S.G. supervised the study. D.M., N.T., A.L.J., J.F.B. and S.G. wrote the paper. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Najwa Taib or Simonetta Gribaldo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information:

Supplementary Figs. 1–11

Reporting Summary

Peer Review File

Supplementary Tables 1–3

1. Dcw cluster homologues in DB-SMALL (387 taxa). For each taxon, we provide the NCBI TaxID, taxonomy and the NCBI Genbank accession numbers of the homologues identified for 15 dcw cluster proteins (MraZ, MraW, FtsI, MurE, MurF, MraY, MurD, FtsW, MurG, MurC, MurB, MurA, DdlB, FtsA and FtsZ) and proteins MrdA and RodA. For each protein, there is one column that corresponds to the hits obtained with HMMSEARCH (‘_HMMSEARCH’) and one column that corresponds to the hits obtained with MacSyFinder (‘_DCW’ and ‘_cluster’). The hits were manually curated using alignments, phylogenies and synteny. This table is a reduced and cleaned version of Supplementary Table 2. 2. Dcw cluster homologues in DB-LARGE (1081 taxa). For each taxon, we provide the NCBI TaxID, organism name, NCBI assembly accession, NCBI RefSeq category of the assembly, assembly level, taxonomy and the NCBI Genbank accession numbers of the homologues identified for 15 dcw cluster proteins (MraZ, MraW, FtsI, MurE, MurF, MraY, MurD, FtsW, MurG, MurC, MurB, MurA, DdlB, FtsA and FtsZ). For each protein, there is one column that corresponds to the hits obtained with HMMSEARCH (‘_HMMSEARCH’) and one column that corresponds to the hits obtained with MacSyFinder (‘_DCW’). A separate sheet contains the dcw cluster homologues in the CPR only (279 taxa). 3. MurJ homologues in DB-SMALL (387 taxa) obtained using HMMSEARCH. For each taxon, we provide the NCBI TaxID, taxonomy and the NCBI Genbank accession numbers of the homologues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megrian, D., Taib, N., Jaffe, A.L. et al. Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat Microbiol 7, 2114–2127 (2022). https://doi.org/10.1038/s41564-022-01257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01257-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology