Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes

Abstract

Ion transport in nanoconfinement differs from that in bulk and has been extensively researched across scientific and engineering disciplines1,2,3,4. For many energy and water applications of nanoporous materials, concentration-driven ion diffusion is simultaneously subjected to a local electric field arising from surface charge or an externally applied potential. Due to the uniquely crowded intermolecular forces under severe nanoconfinement (<2 nm), the transport behaviours of ions can be influenced by the interfacial electrical double layer (EDL) induced by a surface potential, with complex implications, engendering unusual ion dynamics5,6,7. However, it remains an experimental challenge to investigate how such a surface potential and its coupling with nanoconfinement manipulate ion diffusion. Here, we exploit the tunable nanoconfinement in layered graphene-based nanoporous membranes to show that sub-2 nm confined ion diffusion can be strongly modulated by the surface potential-induced EDL. Depending on the potential sign, the combination and concentration of ion pairs, diffusion rates can be reversibly modulated and anomalously enhanced by 4~7 times within 0.5 volts, across a salt concentration gradient up to seawater salinity. Modelling suggests that this anomalously enhanced diffusion is related to the strong ion–ion correlations under severe nanoconfinement, and cannot be explained by conventional theoretical predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ion diffusion through nanoconfined EDLs in charged layered graphene-based nanoporous membranes.
Fig. 2: Normalized membrane flux dependence on Vg under various levels of nanoconfinement and concentration gradient.
Fig. 3: Ion-specific electrostatically modulated ion diffusion through layered graphene-based nanoporous membranes (d= 2 nm).
Fig. 4: Role of ion–ion correlations in altering channel counter- and co-ion concentrations, membrane potential and membrane flux against varied channel height.

Similar content being viewed by others

References

  1. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  Google Scholar 

  2. Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotech. 4, 713–720 (2009).

    Article  CAS  Google Scholar 

  3. Duan, C. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels . Nat. Nanotech. 5, 848–852 (2010).

    Article  CAS  Google Scholar 

  4. Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005).

    Article  CAS  Google Scholar 

  5. Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    Article  CAS  Google Scholar 

  6. Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    Article  CAS  Google Scholar 

  7. Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    Article  CAS  Google Scholar 

  8. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    Article  CAS  Google Scholar 

  9. Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).

    Article  CAS  Google Scholar 

  10. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  11. Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotech. 12, 1083–1088 (2017).

    Article  CAS  Google Scholar 

  12. Chen, L. et al. Ion sieving in graphene oxide membranes via ationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  Google Scholar 

  13. Yang, X. et al. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. 50, 7325–7328 (2011).

    Article  CAS  Google Scholar 

  14. Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article  Google Scholar 

  15. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    Article  CAS  Google Scholar 

  16. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    Article  CAS  Google Scholar 

  17. Jiang, G., Cheng, C., Li, D. & Liu, J. Z. Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Res. 9, 174–186 (2016).

    Article  CAS  Google Scholar 

  18. Surwade, S. P. et al. Electrochemical control of ion transport through a mesoporous carbon membrane. Langmuir 30, 3606–3611 (2014).

    Article  CAS  Google Scholar 

  19. Borukhov, I., Andelman, D. & Orland, H. Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79, 435–438 (1997).

    Article  CAS  Google Scholar 

  20. Schaefer, A., Fane, A. G. & Waite, T. Nanofiltration: Principles and Applications 2nd edn (Elsevier, 2017).

  21. Tsuru, T., Nakao, S. I. & Kimura, S. Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. J. Chem. Eng. Jap. 24, 511–517 (1991).

    Article  CAS  Google Scholar 

  22. Nishizawa, M., Menon, V. P. & Martin, C. R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268, 700–702 (1995).

    Article  CAS  Google Scholar 

  23. Yan, L. Electrostatic correlations: from plasma to biology. Rep. Progr. Phys. 65, 1577 (2002).

    Article  Google Scholar 

  24. Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Article  Google Scholar 

  25. Grosberg, A. Y., Nguyen, T. & Shklovskii, B. Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002).

    Article  CAS  Google Scholar 

  26. Quesada-Pérez, M., González-Tovar, E., Martín-Molina, A., Lozada-Cassou, M. & Hidalgo-Álvarez, R. Overcharging in colloids: beyond the poisson–boltzmann approach. ChemPhysChem 4, 234–248 (2003).

    Article  Google Scholar 

  27. van der Vegt, N. F. A. et al. Water-mediated ion pairing: occurrence and relevance. Chem. Rev. 116, 7626–7641 (2016).

    Article  Google Scholar 

  28. Ballenegger, V. & Hansen, J. P. Dielectric permittivity profiles of confined polar fluids. J. Chem. Phys. 122, 114711 (2005).

    Article  CAS  Google Scholar 

  29. Prakash, S. & Conlisk, A. T. Field effect nanofluidics. Lab Chip 16, 3855–3865 (2016).

    Article  CAS  Google Scholar 

  30. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  31. Qiu, L. et al. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem. Commun. 47, 5810–5812 (2011).

    Article  CAS  Google Scholar 

  32. Kornyshev, A. A. Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111, 5545–5557 (2007).

    Article  CAS  Google Scholar 

  33. Ghoufi, A., Szymczyk, A., Renou, R. & Ding, M. Calculation of local dielectric permittivity of confined liquids from spatial dipolar correlations. Europhys. Lett. 99, 37008 (2012).

    Article  Google Scholar 

  34. Daiguji, H., Yang, P. & Majumdar, A. Ion transport in nanofluidic channels. Nano Lett. 4, 137–142 (2003).

    Article  Google Scholar 

  35. Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901–911 (2010).

    Article  CAS  Google Scholar 

  36. Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004).

    Article  CAS  Google Scholar 

  37. Liu, J. L. Numerical methods for the Poisson–Fermi equation in electrolytes. J. Comput. Phys. 247, 88–99 (2013).

    Article  CAS  Google Scholar 

  38. Xie, D., Liu, J. L. & Eisenberg, B. Nonlocal Poisson-Fermi model for ionic solvent. Phys. Rev. E 94, 012114 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the Australian Research Council. This work made use of the facilities at the Monash Centre for Electron Microscopy (MCEM).

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived, designed and carried out the experiments under the guidance of D.L. and G.P.S. D.L. and C.C. formulated the concept of using a nano-confined electrical double layer for ion modulation. G.J. designed and carried out the theoretical modelling under the guidance of J.Z.L. All authors discussed and interpreted the results. C.C. and G.J. wrote the manuscript with contributions from all the other authors.

Corresponding authors

Correspondence to Jefferson Zhe Liu or Dan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Jiang, G., Simon, G.P. et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nature Nanotech 13, 685–690 (2018). https://doi.org/10.1038/s41565-018-0181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0181-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing