Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant enhancement of third-harmonic generation in graphene–metal heterostructures

Abstract

Nonlinear nanophotonics leverages engineered nanostructures to funnel light into small volumes and intensify nonlinear optical processes with spectral and spatial control. Owing to its intrinsically large and electrically tunable nonlinear optical response, graphene is an especially promising nanomaterial for nonlinear optoelectronic applications. Here we report on exceptionally strong optical nonlinearities in graphene–insulator–metal heterostructures, which demonstrate an enhancement by three orders of magnitude in the third-harmonic signal compared with that of bare graphene. Furthermore, by increasing the graphene Fermi energy through an external gate voltage, we find that graphene plasmons mediate the optical nonlinearity and modify the third-harmonic signal. Our findings show that graphene–insulator–metal is a promising heterostructure for optically controlled and electrically tunable nano-optoelectronic components.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketch of gate-tunable graphene heterostructures.
Fig. 2: Characterization of the third-harmonic signal.
Fig. 3: Third-order nonlinear susceptibility and electrical gating dependence.
Fig. 4: The role of graphene plasmons in THG.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Choi, I. & Choi, Y. Plasmonic nanosensors: review and prospect. IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2011).

    Google Scholar 

  2. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    CAS  Google Scholar 

  3. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    CAS  Google Scholar 

  4. Stockman, M. I. Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011).

    Google Scholar 

  5. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    CAS  Google Scholar 

  6. Abd El-Fattah, Z. M. et al. Plasmonics in atomically thin crystalline silver films. ACS Nano 13, 7771–7779 (2019).

    CAS  Google Scholar 

  7. Echarri, A. R., Cox, J. D. & de Abajo, F. J. G. Quantum effects in the acoustic plasmons of atomically thin heterostructures. Optica 6, 630–641 (2019).

    CAS  Google Scholar 

  8. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

  9. Kravets, V. G., Kabashin, A. V., Barnes, W. L. & Grigorenko, A. N. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118, 5912–5951 (2018).

    CAS  Google Scholar 

  10. Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406 (2013).

    Google Scholar 

  11. Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photon. 112, 430–436 (2018).

    Google Scholar 

  12. Hong, S.-Y. et al. Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013).

    Google Scholar 

  13. Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

    CAS  Google Scholar 

  14. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    CAS  Google Scholar 

  15. Dremetsika, E. et al. Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Opt. Lett. 41, 3281–3284 (2016).

    CAS  Google Scholar 

  16. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    CAS  Google Scholar 

  17. Baudisch, M. et al. Ultrafast nonlinear optical response of Dirac fermions in graphene. Nat. Commun. 9, 1018 (2018).

    Google Scholar 

  18. Ooi, K. J., Ang, L. K. & Tan, D. T. Waveguide engineering of graphene’s nonlinearity. Appl. Phys. Lett. 105, 111110 (2014).

    Google Scholar 

  19. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630 (2011).

    CAS  Google Scholar 

  20. Koppens, F. H., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    CAS  Google Scholar 

  21. Grigorenko, A., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    CAS  Google Scholar 

  22. Garcia de Abajo, F. J. Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014).

    CAS  Google Scholar 

  23. Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Google Scholar 

  24. Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313 (2019).

    CAS  Google Scholar 

  25. Thongrattanasiri, S., Koppens, F. H. & García de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    Google Scholar 

  26. Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971–979 (2018).

    CAS  Google Scholar 

  27. Gullans, M., Chang, D. E., Koppens, F. H. L., García de Abajo, F. J. & Lukin, M. D. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

    CAS  Google Scholar 

  28. Alonso Calafell, I. et al. Quantum computing with graphene plasmons. npj Quantum Inf. 5, 37 (2019).

    Google Scholar 

  29. Mikhailov, S. A. Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems. Phys. Rev. B 84, 045432 (2011).

    Google Scholar 

  30. Gorbach, A. V. Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A 87, 013830 (2013).

    Google Scholar 

  31. Cox, J. D. & García de Abajo, F. J. Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat. Commun. 6725, 5725 (2014).

    Google Scholar 

  32. Manzoni, M. T., Silveiro, I., García de Abajo, F. J. & Chang, D. E. Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays. New J. Phys. 17, 083031 (2015).

    Google Scholar 

  33. Cox, J. D., Marini, A. & García de Abajo, F. J. Plasmon-assisted high-harmonic generation in graphene. Nat. Commun. 8, 14380 (2017).

    CAS  Google Scholar 

  34. Rostami, H., Katsnelson, M. I. & Polini, M. Theory of plasmonic effects in nonlinear optics: the case of graphene. Phys. Rev. B 95, 035416 (2017).

    Google Scholar 

  35. Constant, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical generation of surface plasmons in graphene. Nat. Phys. 12, 124–127 (2016).

    CAS  Google Scholar 

  36. Kundys, D. et al. Nonlinear light mixing by graphene plasmons. Nano Lett. 18, 282–287 (2018).

    CAS  Google Scholar 

  37. Jadidi, M. M. et al. Nonlinear terahertz absorption of graphene plasmons. Nano Lett. 16, 2734–2738 (2016).

    CAS  Google Scholar 

  38. Mikhailov, S. A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. Phys. Rev. B 93, 085403 (2016).

    Google Scholar 

  39. Cheng, J. L., Vermeulen, N. & Sipe, J. Third-order nonlinearity of graphene: effects of phenomenological relaxation and finite temperature. Phys. Rev. B 91, 235320 (2015).

    Google Scholar 

  40. Saynatjoki, A. et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7, 8441–8446 (2013).

    CAS  Google Scholar 

  41. Woodward, R. et al. Characterization of the second-and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2016).

    Google Scholar 

  42. Mikhailov, S. A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. Phys. Rev. B 93, 085403 (2016).

    Google Scholar 

  43. Phare, C. T., Lee, Y.-H. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511 (2015).

    CAS  Google Scholar 

  44. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Google Scholar 

  45. Soavi, G. et al. Hot electrons modulation of third-harmonic generation in graphene. ACS Photon. 6, 2841–2849 (2019).

    CAS  Google Scholar 

  46. Mikhailov, S. A. Theory of the strongly nonlinear electrodynamic response of graphene: a hot electron model. Phys. Rev. B 100, 115416 (2019).

    CAS  Google Scholar 

  47. Shi, S.-F. et al. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. Nano Lett. 14, 1578–1582 (2014).

    CAS  Google Scholar 

  48. Manceau, J.-M., Zanotto, S., Sagnes, I., Beaudoin, G. & Colombelli, R. Optical critical coupling into highly confining metal–insulator–metal resonators. Appl. Phys. Lett. 103, 091110 (2013).

    Google Scholar 

  49. Yu, R., Manjavacas, A. & García de Abajo, F. J. Ultrafast radiative heat transfer. Nat. Commun. 8, 2 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank S. Zanotto for assistance with the Matlab code. P.W. acknowledges support from the European Commission through ErBeSta (no. 800942), the Austrian Research Promotion Agency (FFG) through the QuantERA ERA-NET Cofund project HiPhoP, the Austrian Science Fund (FWF) through CoQuS (W 1210-N25), NaMuG (P30067-N36) and BeyondC (F 7113-N38), the US Air Force Office of Scientific Research (FA2386-233 17-1-4011 and FA8655-20-1-7030) and Red Bull GmbH. F.J.G.A. acknowledges support from the ERC (Advanced Grant 789104-eNANO) and the Spanish MINECO (MAT2017-88492-R). F.H.L.K. acknowledges support from the Government of Spain (FIS2016-81044, Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results received funding from the European Union’s Horizon 2020 under grant agreements no. 785219 (Graphene flagship Core2) and no. 881603 (Graphene flagship Core3). This work was supported by the ERC TOPONANOP under grant agreement no. 726001. ICFO is financially supported by the Spanish MINECO (SEV2015-0522), the Catalan CERCA, Fundació Privada Cellex, the Spanish Ministry of Economy and Competitiveness through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522) and Fundacio Cellex Barcelona, Generalitat de Catalunya, through the CERCA programme. The MIT portion of this work was supported in part by the NSF Center for Integrated Quantum Materials (CIQM), the US Army Research Office (Award W911NF-17-1-0435) and the Institute for Soldier Nanotechnologies (contract no. W911NF-18-2-0048). The Center for Nano Optics is financially supported by the University of Southern Denmark (SDU 2020 funding). J.D.C. was supported by VILLUM Fonden (grant no. 16498). I.A.C. and P.K.J. acknowledge support from the University of Vienna via the Vienna Doctoral School. L.A.R. acknowledges support from the Templeton World Charity Foundation (fellowship no. TWCF0194). D.A.I. acknowledges support from the Spanish MINECO FPI Grant (BES-2014-068504). A.T. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF). All authors acknowledge support from the European Commission via GRASP (No. 613024). This article reflects only the authors’ views—the EU Agency is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Contributions

I.A.C., L.A.R., F.H.L.K. and A.T. designed the experiment, performed the measurements and analysed the results. I.A.C., L.A.R., D.A.I., F.H.L.K. and J.D.C. wrote the manuscript. D.A.I., S.N., A.K. and F.H.L.K. fabricated and characterized the samples. D.A.I., J.D.C., P.K.J., H.B. and F.J.G.A. provided theoretical support and simulations. P.W., F.H.L.K. and F.J.G.A. supervised the project. All the authors read and commented on the manuscript.

Corresponding author

Correspondence to Irati Alonso Calafell.

Ethics declarations

competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso Calafell, I., Rozema, L.A., Alcaraz Iranzo, D. et al. Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nat. Nanotechnol. 16, 318–324 (2021). https://doi.org/10.1038/s41565-020-00808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00808-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing