Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters

Abstract

Silicon photonics is evolving from laboratory research to real-world applications with the potential to transform many technologies, including optical neural networks and quantum information processing. A key element for these applications is a reconfigurable switch operating at ultra-low programming energy—a challenging proposition for traditional thermo-optic or free carrier switches. Recent advances in non-volatile programmable silicon photonics based on phase-change materials (PCMs) provide an attractive solution to energy-efficient photonic switches with zero static power, but the programming energy density remains high (hundreds of attojoules per cubic nanometre). Here we demonstrate a non-volatile electrically reconfigurable silicon photonic platform leveraging a monolayer graphene heater with high energy efficiency and endurance. In particular, we show a broadband switch based on the technologically mature PCM Ge2Sb2Te5 and a phase shifter employing the emerging low-loss PCM Sb2Se3. The graphene-assisted photonic switches exhibited an endurance of over 1,000 cycles and a programming energy density of 8.7 ± 1.4 aJ nm3, that is, within an order of magnitude of the PCM thermodynamic switching energy limit (~1.2 aJ nm3) and at least a 20-fold reduction in switching energy compared with the state of the art. Our work shows that graphene is a reliable and energy-efficient heater compatible with dielectric platforms, including Si3N4, for technologically relevant non-volatile programmable silicon photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A graphene–PCM reconfigurable silicon photonic platform.
Fig. 2: Graphene-assisted broadband waveguide switch based on GST.
Fig. 3: Graphene-assisted phase shifter based on Sb2Se3 in a micro-ring.
Fig. 4: Quasi-continuous phase modulation using the graphene–Sb2Se3 phase shifter.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Cheng, Q., Bahadori, M., Glick, M., Rumley, S. & Bergman, K. Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018).

    Article  CAS  Google Scholar 

  2. Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    Article  CAS  Google Scholar 

  3. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article  CAS  Google Scholar 

  4. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  CAS  Google Scholar 

  5. Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    Article  CAS  Google Scholar 

  6. Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38, 733–735 (2013).

    Article  Google Scholar 

  7. Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).

    Article  CAS  Google Scholar 

  8. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  CAS  Google Scholar 

  9. Han, J.-H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

    Article  CAS  Google Scholar 

  10. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    Article  CAS  Google Scholar 

  11. Koeber, S. et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci. Appl. 4, e255 (2015).

    Article  CAS  Google Scholar 

  12. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    Article  CAS  Google Scholar 

  13. Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2021.3120713 (2021).

  14. Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).

    Article  Google Scholar 

  15. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).

    Article  CAS  Google Scholar 

  16. Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218 (2020).

    Article  CAS  Google Scholar 

  17. Zheng, J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551–1561 (2018).

    Article  CAS  Google Scholar 

  18. Ríos, C. et al. Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials. Preprint at https://arxiv.org/abs/2105.06010 (2021).

  19. Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon. 6, 553–557 (2019).

    Article  CAS  Google Scholar 

  20. Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    Article  CAS  Google Scholar 

  21. Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256 (2017).

    Article  CAS  Google Scholar 

  22. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  CAS  Google Scholar 

  23. Delaney, M. et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 7, eabg3500 (2021).

    Article  CAS  Google Scholar 

  24. Delaney, M., Zeimpekis, I., Lawson, D., Hewak, D. W. & Muskens, O. L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 30, 2002447 (2020).

    Article  CAS  Google Scholar 

  25. Zheng, J., Zhu, S., Xu, P., Dunham, S. & Majumdar, A. Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters. ACS Appl. Mater. Interfaces 12, 21827–21836 (2020).

    Article  CAS  Google Scholar 

  26. Zhang, H. et al. Miniature multilevel optical memristive switch using phase change material. ACS Photon. 6, 2205–2212 (2019).

    Article  CAS  Google Scholar 

  27. Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium–tin-oxide heater. Appl. Phys. Express 10, 072201 (2017).

    Article  Google Scholar 

  28. Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. Opt. Express 29, 20449–20462 (2021).

    Article  CAS  Google Scholar 

  29. Fang, Z. et al. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater. 9, 2002049 (2021).

    Article  CAS  Google Scholar 

  30. Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    Article  CAS  Google Scholar 

  31. Khan, A. I. et al. Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science 373, 1243–1247 (2021).

    Article  CAS  Google Scholar 

  32. Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 5, eaaw2687 (2019).

    Article  CAS  Google Scholar 

  33. Ballan, H. & Declercq, M. High Voltage Devices and Circuits in Standard CMOS Technologies (Springer, 2013).

  34. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  CAS  Google Scholar 

  35. Heimala, P., Katila, P., Aarnio, J. & Heinamaki, A. Thermally tunable integrated optical ring resonator with poly-Si thermistor. J. Lightwave Technol. 14, 2260–2267 (1996).

    Article  CAS  Google Scholar 

  36. Fang, Z., Zheng, J., & Majumdar, A. Non-volatile integrated photonics enabled by broadband transparent phase change material. In Conference on Lasers and Electro-Optics JTh2B.3 (Optical Society of America, 2020); https://doi.org/10.1364/CLEO_AT.2020.JTh2B.3

  37. Ríos, C. et al. Multi-level electro-thermal switching of optical phase-change materials using graphene. Adv. Photon. Res. 2, 2000034 (2021).

    Article  Google Scholar 

  38. Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).

    Article  CAS  Google Scholar 

  39. Loke, D. K. et al. Ultrafast nanoscale phase-change memory enabled by single-pulse conditioning. ACS Appl. Mater. Interfaces 10, 41855–41860 (2018).

    Article  CAS  Google Scholar 

  40. Xiong, C. et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3, 1060–1065 (2016).

    Article  CAS  Google Scholar 

  41. Schuler, S. et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 12, 3733 (2021).

    Article  CAS  Google Scholar 

  42. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  Google Scholar 

  43. Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    Article  CAS  Google Scholar 

  44. Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1–6 (2019).

    Article  Google Scholar 

  45. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  46. Gao, L. et al. Face-to-face transfer of wafer-scale graphene films. Nature 505, 190–194 (2014).

    Article  CAS  Google Scholar 

  47. Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    Article  CAS  Google Scholar 

  48. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Article  CAS  Google Scholar 

  49. Liang, X. et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011).

    Article  CAS  Google Scholar 

  50. Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018).

    Article  CAS  Google Scholar 

  51. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation (NSF-1640986 and NSF-2003509), an ONR-YIP Award, a DARPA-YFA Award, the Draper Laboratory and Intel. Part of this work was conducted at the Washington Nanofabrication Facility/Molecular Analysis Facility, a National Nanotechnology Coordinated Infrastructure (NNCI) site at the University of Washington with partial support from the National Science Foundation (NNCI-1542101 and NNCI-2025489). We thank S. Moazeni for allowing us to use the high-speed photoreceiver at the University of Washington.

Author information

Authors and Affiliations

Authors

Contributions

Z.F. and A.M. conceived the project. Z.F. simulated, designed and fabricated the devices. Z.F. led the switching experiments, optical characterizations and performed the data analysis. R.C. helped with the experiments and characterizations. J.Z. developed the initial fabrication process flow and design of the experiments. J.Z. and R.C. helped with the data analysis. A.I.K. and K.M.N. deposited the Sb2Se3 materials. A.S. illustrated the device schematics. M.E.C. advised on the SLG transfer process. C.R. and J.H. advised on the device design and fabrication process. E.P. facilitated the Sb2Se3 deposition and advised on the transfer of SLG. A.M., S.J.G., D.M.C. and M.G.M. supervised the overall progress of the project. Z.F. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Zhuoran Fang or Arka Majumdar.

Ethics declarations

Competing interests

All authors are listed as co-inventors on a US patent provisional application (patent application number 63/365,135) on the ultra-low-energy phase shifter filed by the Charles Stark Draper Laboratory.

Peer review

Peer review information

Nature Nanotechnology thanks Otto Muskens and Linjie Zhou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–11 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Chen, R., Zheng, J. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022). https://doi.org/10.1038/s41565-022-01153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01153-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing