Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches

Subjects

Abstract

Dynamic patterning of soft materials in a fully reversible and programmable manner with light enables applications in anti-counterfeiting, displays and labelling technology. However, this is a formidable challenge due to the lack of suitable chiral molecular photoswitches. Here, we report the development of a unique intrinsic chiral photoswitch with broad chirality modulation to achieve digitally controllable, selectable and extractable multiple stable reflection states. An anti-counterfeiting technique, embedded with diverse microstructures, featuring colour-tunability, erasability, reversibility, multi-stability and viewing-angle dependency of pre-recorded patterns, is established with these photoresponsive superstructures. This strategy allows dynamic helical transformation from the molecular and supramolecular to the macroscopic level using light-activated intrinsic chirality, demonstrating the practicality of photoprogramming photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intrinsic chirality endowing the photoswitch with unique features for photoprogrammable LC helical superstructures.
Fig. 2: HPLC, CD spectra, fatigue resistance and thermal stability comparisons: intrinsic chirality versus extrinsic chiral groups.
Fig. 3: Dynamic and reversible light control of the helical LC superstructure with multi-stability.
Fig. 4: Photoprogramming and modulation capabilities of photoswitch (M)-1o enable the reconfiguration of optical microstructures with highly efficient diffraction and microcavity features.
Fig. 5: Multiple anti-counterfeiting characteristics with light-induced pattern emergence and hiding, colour-tunability and reversibility, digitalized extraction, viewing-angle-dependent reflectance as well as embedded hidden microstructures.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Information.

References

  1. Wiersma, D. S. Disordered photonics. Nat. Photonics 7, 188–196 (2013).

    Article  ADS  Google Scholar 

  2. Chung, W.-J. et al. Biomimetic self-templating supramolecular structures. Nature 478, 364–368 (2011).

    Article  ADS  Google Scholar 

  3. Kosa, T. et al. Light-induced liquid crystallinity. Nature 485, 347–349 (2012).

    Article  ADS  Google Scholar 

  4. Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    Article  ADS  Google Scholar 

  5. Pieraccini, S., Masiero, S., Ferrarini, A. & Piero Spada, G. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem. Soc. Rev. 40, 258–271 (2011).

    Article  Google Scholar 

  6. Eelkema, R. et al. Rotational reorganization of doped cholesteric liquid crystalline films. J. Am. Chem. Soc. 128, 14397–14407 (2006).

    Article  Google Scholar 

  7. Sackmann, E. Photochemically induced reversible color changes in cholesteric liquid crystals. J. Am. Chem. Soc. 93, 7088–7090 (1971).

    Article  Google Scholar 

  8. Huck, N. P. M., Jager, W. F., de Lange, B. & Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996).

    Article  ADS  Google Scholar 

  9. Wang, Y. & Li, Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012).

    Article  Google Scholar 

  10. Mathews, M. & Tamaoki, N. Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals. J. Am. Chem. Soc. 130, 11409–11416 (2008).

    Article  Google Scholar 

  11. Feringa, B. L., Huck, N. P. M. & van Doren, H. A. Chiroptical switching between liquid crystalline phases. J. Am. Chem. Soc. 117, 9929–9930 (1995).

    Article  Google Scholar 

  12. Bosco, A. et al. Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J. Am. Chem. Soc. 130, 14615–14624 (2008).

    Article  Google Scholar 

  13. White, T. J. et al. Widely tunable, photoinvertible cholesteric liquid crystals. Adv. Mater. 23, 1389–1392 (2011).

    Article  ADS  Google Scholar 

  14. van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

    Article  ADS  Google Scholar 

  15. Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    Article  ADS  Google Scholar 

  16. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  Google Scholar 

  17. Qin, L., Wei, J. & Yu, Y. Photostationary RGB selective reflection from self-organized helical superstructures for continuous photopatterning. Adv. Opt. Mater. 7, 1900430 (2019).

    Article  Google Scholar 

  18. Qin, L., Gu, W., Wei, J. & Yu, Y. Piecewise phototuning of self-organized helical superstructures. Adv. Mater. 30, 1704941 (2018).

    Article  Google Scholar 

  19. Wang, H., Bisoyi, H. K., Urbas, A. M., Bunning, T. J. & Li, Q. Reversible circularly polarized reflection in a self-organized helical superstructure enabled by a visible-light-driven axially chiral molecular switch. J. Am. Chem. Soc. 141, 8078–8082 (2019).

    Article  Google Scholar 

  20. Feng, W., Broer, D. J. & Liu, D. Combined light and electric response of topographic liquid crystal network surfaces. Adv. Funct. Mater. 30, 1901681 (2020).

    Article  Google Scholar 

  21. Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995).

    Article  ADS  Google Scholar 

  22. Toshiya, S. & Yasushi, Y. Reversible control of the pitch of cholesteric liquid crystals by photochromism of chiral fulgide derivatives. Bull. Chem. Soc. Jpn 73, 191–196 (2000).

    Article  Google Scholar 

  23. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    Article  Google Scholar 

  24. van Leeuwen, T. et al. Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch. J. Mater. Chem. C 21, 3142–3146 (2011).

    Article  Google Scholar 

  25. Li, Y., Urbas, A. & Li, Q. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J. Am. Chem. Soc. 134, 9573–9576 (2012).

    Article  Google Scholar 

  26. Yamaguchi, T., Inagawa, T., Nakazum, H. I., Irie, S. & Irie, M. Photoswitching of helical twisting power of a chiral diarylethene dopant: pitch change in a chiral nematic liquid crystal. Chem. Mater. 12, 869–871 (2000).

    Article  Google Scholar 

  27. Yuan, C.-L. et al. Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices. Sci. Adv. 5, eaax9501 (2019).

    Article  ADS  Google Scholar 

  28. Walko, M., & Feringa, B. L. The isolation and photochemistry of individual atropisomers of photochromic diarylethenes. Chem. Commun. 1745–1747 (2007).

  29. Zhu, W. et al. Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge. Angew. Chem. Int. Ed. 50, 10986–10990 (2011).

    Article  Google Scholar 

  30. Li, W. et al. Enantiospecific photoresponse of sterically hindered diarylethenes for chiroptical switches and photomemories. Sci. Rep. 5, 9186 (2015).

    Article  Google Scholar 

  31. Li, Y., Xue, C., Wang, M., Urbas, A. & Li, Q. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures. Angew. Chem. Int. Ed. 52, 13703–13707 (2013).

    Article  Google Scholar 

  32. Li, Q. et al. Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure. Adv. Mater. 23, 5069–5073 (2011).

    Article  Google Scholar 

  33. Wang, H. et al. Photochemically and thermally driven full-color reflection in a self-organized helical superstructure enabled by a halogen-bonded chiral molecular switch. Angew. Chem. Int. Ed. 57, 1627–1631 (2018).

    Article  Google Scholar 

  34. Kragt, A. J. J., Hoekstra, D. C., Stallinga, S., Broer, D. J. & Schenning, A. P. H. J. 3D helix engineering in chiral photonic materials. Adv. Mater. 31, 1903120 (2019).

    Article  Google Scholar 

  35. Coles, H. & Morris, S. Liquid-crystal lasers. Nat. Photonics 4, 676–685 (2010).

    Article  ADS  Google Scholar 

  36. Sun, P.-Z. et al. Light-reconfigured waveband-selective diffraction device enabled by micro-patterning of a photoresponsive self-organized helical superstructure. J. Mater. Chem. C 4, 9325–9330 (2016).

    Article  Google Scholar 

  37. Choi, S. S., Morris, S. M., Huck, W. T. S. & Coles, H. J. Simultaneous red–green–blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template. Adv. Mater. 22, 53–56 (2010).

    Article  Google Scholar 

  38. Lin, J.-H., Chen, P.-Y. & Wu, J.-J. Mode competition of two band edge lasing from dye doped cholesteric liquid crystal laser. Opt. Express 22, 9932–9941 (2014).

    Article  ADS  Google Scholar 

  39. Chilaya, G. et al. Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes. Adv. Mater. 19, 565–568 (2007).

    Article  Google Scholar 

  40. Chen, L.-J., Lin, J.-D. & Lee, C.-R. An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser. J. Mater. Chem. C 2, 4388–4394 (2014).

    Article  Google Scholar 

  41. Chen, L. et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv. Opt. Mater. 2, 845–848 (2014).

    Article  Google Scholar 

  42. Abdollahi, A., Roghani-Mamaqani, H., Razavi, B. & Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges. ACS Nano 14, 14417–14492 (2020).

    Article  Google Scholar 

  43. Qin, L. et al. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat. Commun. 12, 699 (2021).

    Article  ADS  Google Scholar 

  44. Li, Z. et al. Photoresponsive supramolecular coordination polyelectrolyte as smart anticounterfeiting inks. Nat. Commun. 12, 1363 (2021).

    Article  ADS  Google Scholar 

  45. Ma, T. et al. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 11, 1811 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (21788102, 21636002, 61822504, 51873060 and 21702059), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX03 and 21JC1401700), the Innovation Program of the Shanghai Municipal Education Commission, the Scientific Committee of Shanghai (15XD1501400 and 2021-01-07-00-02-E00107), the China Postdoctoral Science Foundation (2019M661399), the Shanghai Sailing Program (20YF1410500) and the ‘Shuguang Program’ of the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (21SG29). B.L.F. thanks the financial support from the European Research Council (ERC; advanced grant no. 694345 to B.L.F.) and the Dutch Ministry of Education, Culture and Science (Gravitation program no. 024.001.035). We thank A. Lubbe and Q. Zhang for their suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Z. Zheng, W.-H.Z. and B.L.F. conceived and supervised the research. B.L.F., H.T., W.-H.Z., D.-H.Q., Z. Zheng, H.H. and Z. Zhang prepared the manuscript. H.H., B.L. and M.L. carried out the experiments. Z. Zheng, H.H., Z. Zhang, B.L. and W.-H.Z. conducted the data analysis.

Corresponding authors

Correspondence to Wei-Hong Zhu or Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 HPLC, CD spectra, fatigue resistance and thermal stability comparisons: intrinsic chirality vs. extrinsic chiral groups.

a, Chiral HPLC chromatograms of (M)-2o, (CH3CN, monitored at the isobestic point of 340 nm). b, Chiral HPLC chromatograms of (M)-3o (CH3CN : H2O=80 : 20, 0.5 mL min−1, monitored at the isobestic point of 303 nm). c, d, The circular dichroism spectra of (M)-2o and (M)-3o. e, f, Fatigue resistance of (M)-2o and (M)-3o in tetrahydrofuran at 2.0 × 10−5 M. The photoswitches were irradiated with UV  = 313 ± 10 nm) light and visible (λ > 480 nm) light and the detected value is the maximum absorption in the visible region.

Source data

Extended Data Fig. 2 Dynamic controlling of reflection wavelength through light switchable intrinsic chirality.

Reflection wavelength of a, 0.62 mol% of (M)-2o, b, 1.44 mol% of (M)-3o, c, 0.77 mol% of (S,S)-4o, in the twisted nematic LC (LCM17, commercially from PhiChem, Shanghai) in a 4.9 μm thick planar cell upon exposure to 365 nm (4.0 mW cm−2) with different times and the recovery was achieved by a 530 nm (1.0 mW cm−2) visible light irradiation corresponding to (d-f).

Source data

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–34, Tables 1–11 and refs. 1–4.

Supplementary Video 1

Reflection colour change of the oily-streak texture.

Supplementary Video 2

‘ECUST’ QR code anti-counterfeiting observed at the Bragg angle.

Supplementary Video 3

‘ECUST’ QR code anti-counterfeiting observed deviated from the Bragg angle.

Supplementary Video 4

Scanning of ‘ECUST’ QR code image.

Supplementary Video 5

‘ECUST’ QR code anti-counterfeiting observed after half a year.

Supplementary Video 6

Anti-counterfeiting of embedding invisible microstructures into the ‘ECUST’ QR code.

Supplementary Video 7

Scanning of ‘ECUST’ QR code in LC cell.

Supplementary Video 8

‘WINE’ QR code anti-counterfeiting on wine.

Supplementary Video 9

Anti-counterfeiting of tree image on Chinese baijiu (Chinese liquor).

Supplementary Data 1

Crystallographic data of 1o.

Supplementary Data 2

Crystallographic data of 1c.

Supplementary Data 3

Raw 1H NMR data of (M)-1o.

Supplementary Data 4

Raw 1H NMR data of (M)-2o.

Source data

Source Data Fig. 2

Unprocessed statistical source data of Fig. 2.

Source Data Fig. 3

Unprocessed statistical source data of Fig. 3.

Source Data Fig. 4

Unprocessed statistical source data of Fig. 4.

Source Data Extended Data Fig. 1

Unprocessed statistical source data of Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Unprocessed statistical source data of Extended Data Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Hu, H., Zhang, Z. et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat. Photon. 16, 226–234 (2022). https://doi.org/10.1038/s41566-022-00957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00957-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing