Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-driven attosecond charge dynamics in germanium

Abstract

The possibility to excite and control charges in matter on ultrafast timescales is a key requisite to overcome the current limits of information transfer and data processing. The major route towards this milestone is based on the employment of short light pulses to manipulate the electro-optical properties of a solid. Nevertheless, the elusive physical mechanisms that unfold on extreme timescales are often complex and entangled, hindering their correct identification and possible exploitation. Here we investigate light-driven excitation in monocrystalline germanium by using attosecond transient reflection spectroscopy. We show that the complex regime established during light–matter interaction cannot be treated with simplified models but requires a detailed analysis in time and reciprocal space to address diverse phenomena such as tunnelling, band dressing, intra-band motion and multiphoton injection. Although single-photon absorption activates and develops earlier during excitation, two-photon processes, tunnelling and other field-driven phenomena reach their maximum effect soon after the peak of the pump pulse. Going against past observations, our results suggest that field-driven phenomena—namely intra-band transitions—can hinder charge injection, confirming that it is impossible to establish the next generation of petahertz information technology without a deep understanding of the diverse physical mechanism behind light–matter interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme and static properties of germanium.
Fig. 2: Attosecond transient reflectivity measurement in germanium.
Fig. 3: Time-dependent excited electron population in reciprocal space.
Fig. 4: Intensity dependence of the photoinjection process.

Similar content being viewed by others

Data availability

The data generated and analysed in this study are provided in the Supplementary Information and/or Source Data. Extended data were available from the corresponding author on reasonable request. Source Data are provided with this paper.

Code availability

All the custom codes used in this study are available from the corresponding author on reasonable request.

References

  1. Schoetz, J. et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photon. 6, 3057–3069 (2019).

    Google Scholar 

  2. Borrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys. 85, 066401 (2022).

    ADS  Google Scholar 

  3. Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A 377, 20170463 (2019).

    ADS  Google Scholar 

  4. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    ADS  Google Scholar 

  5. Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016).

    Google Scholar 

  6. Mashiko, H. et al. Multi-petahertz electron interference in Cr:Al2O3 solid-state material. Nat. Commun. 9, 1468 (2018).

    ADS  Google Scholar 

  7. Buades, B. et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES. Appl. Phys. Rev. 8, 011408 (2021).

    ADS  Google Scholar 

  8. Sato, S. A. et al. Role of intraband transitions in photocarrier generation. Phys. Rev. B 98, 035202 (2018).

    ADS  Google Scholar 

  9. Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    ADS  Google Scholar 

  10. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Google Scholar 

  11. Kruchinin, S. Y., Krausz, F. & Yakovlev, V. S. Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90, 21002 (2018).

    MathSciNet  Google Scholar 

  12. Lucchini, M. et al. Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy. Nat. Commun. 12, 1021 (2021).

    ADS  Google Scholar 

  13. Lucarelli, G. D. et al. Novel beamline for attosecond transient reflection spectroscopy in a sequential two-foci geometry. Rev. Sci. Instrum. 91, 053002 (2020).

    ADS  Google Scholar 

  14. Eskandari-asl, A. & Avella, A. Dynamical projective operatorial approach (DPOA) for out-of-equilibrium systems and its application to TR-ARPES. Preprint at https://arxiv.org/abs/2307.01244 (2023).

  15. Heide, C., Boolakee, T., Higuchi, T. & Hommelhoff, P. Adiabaticity parameters for the categorization of light-matter interaction: from weak to strong driving. Phys. Rev. A 104, 023103 (2021).

    ADS  Google Scholar 

  16. Grinblat, G. et al. Ultrafast sub–30-fs all-optical switching based on gallium phosphide. Sci. Adv. 5, 1–6 (2019).

    Google Scholar 

  17. Chai, Z. et al. Ultrafast all-optical switching. Adv. Opt. Mater. 5, 1600665 (2017).

    Google Scholar 

  18. Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photon. 16, 411–421 (2022).

    ADS  Google Scholar 

  19. Li, J. et al. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 11, 2748 (2020).

    ADS  Google Scholar 

  20. Olofsson, A., Simpson, E. R., Ibrakovic, N., Bengtsson, S. & Mauritsson, J. Spatial control of extreme ultraviolet light with opto-optical phase modulation. Opt. Lett. 46, 2356 (2021).

    ADS  Google Scholar 

  21. Drescher, L. et al. Extreme-ultraviolet refractive optics. Nature 564, 91–94 (2018).

    ADS  Google Scholar 

  22. Kaplan, C. J. et al. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity. Phys. Rev. B 97, 205202 (2018).

    ADS  Google Scholar 

  23. Roessler, D. M. Kramers–Kronig analysis of non-normal incidence reflection. Br. J. Appl. Phys. 16, 1359–1366 (1965).

    ADS  Google Scholar 

  24. Kaplan, C. J. et al. Retrieval of the complex-valued refractive index of germanium near the M4,5 absorption edge. J. Optical Soc. Am. B 36, 1716 (2019).

    ADS  Google Scholar 

  25. Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).

    ADS  Google Scholar 

  26. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    ADS  Google Scholar 

  27. Wu, M., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    ADS  Google Scholar 

  28. Yue, L. & Gaarde, M. B. Introduction to theory of high-harmonic generation in solids: tutorial. J. Opt. Soc. Am. B 39, 535 (2022).

    ADS  Google Scholar 

  29. Berggren, K.-F. & Sernelius, B. E. Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B 24, 1971–1986 (1981).

    ADS  Google Scholar 

  30. Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    ADS  Google Scholar 

  31. Hui, D. et al. Attosecond electron motion control in dielectric. Nat. Photon. 16, 33–37 (2022).

    ADS  Google Scholar 

  32. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Google Scholar 

  33. Ponath, P., Posadas, A. B. & Demkov, A. A. Ge(001) surface cleaning methods for device integration. Appl. Phys. Rev. 4, 021308 (2017).

    ADS  Google Scholar 

  34. Nisoli, M., de Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    ADS  Google Scholar 

  35. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    ADS  Google Scholar 

  36. Itatani, J. et al. Attosecond Streak Camera. Phys. Rev. Lett. 88, 4 (2002).

    Google Scholar 

  37. Windt, D. L. et al. Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24 Å to 1216 Å. Appl. Opt. 27, 246 (1988).

    ADS  Google Scholar 

  38. Géneaux, R., Chang, H.-T., Schwartzberg, A. M. & Marroux, H. J. B. Source noise suppression in attosecond transient absorption spectroscopy by edge-pixel referencing. Opt. Express 29, 951 (2021).

    ADS  Google Scholar 

  39. Bass, M. Handbook of Optics: Volume IGeometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill Education, 2010).

  40. Nunley, T. N. et al. Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6 eV via a multisample ellipsometry investigation. J. Vacuum Sci.Technol. B 34, 061205 (2016).

    ADS  Google Scholar 

  41. Gerung, H. et al. Two-photon absorption of matrix-free Ge nanocrystals. Appl. Phys. Lett. 89, 111107 (2006).

    ADS  Google Scholar 

  42. Lehtola, S., Steigemann, C., Oliveira, M. J. T. & Marques, M. A. L. Recent developments in libxc—a comprehensive library of functionals for density functional theory. SoftwareX 7, 1–5 (2018).

    ADS  Google Scholar 

  43. The Elk Code (SourceForge, 2023); http://elk.sourceforge.net/

  44. Tahini, H., Chroneos, A., Grimes, R. W., Schwingenschlögl, U. & Dimoulas, A. Strain-induced changes to the electronic structure of germanium. J. Phys. Condens. Matter 24, 195802 (2012).

    ADS  Google Scholar 

  45. Tahini, H., Chroneos, A., Grimes, R. W., Schwingenschlögl, U. & Bracht, H. Diffusion of E centers in germanium predicted using GGA + U approach. Appl. Phys. Lett. 99, 072112 (2011).

    ADS  Google Scholar 

  46. Di Ciolo, A. & Avella, A. The composite operator method route to the 2D Hubbard model and the cuprates. Condens. Matter Phys. 21, 33701 (2018).

    ADS  Google Scholar 

  47. Avella, A. Composite operator method analysis of the underdoped cuprates puzzle. Adv. Condens. Matter Phys. 2014, 1–29 (2014).

    Google Scholar 

  48. Avella, A. The Hubbard model beyond the two-pole approximation: a composite operator method study. Eur. Phys. J. B 87, 45 (2014).

    ADS  Google Scholar 

  49. Avella, A. & Mancini, F. Strongly Correlated Systems. Vol. 176 (Springer, 2013).

  50. Mancini, F. & Avella, A. The Hubbard model within the equations of motion approach. Adv. Phys. 53, 537–768 (2004).

    ADS  Google Scholar 

  51. Schüler, M., Marks, J. A., Murakami, Y., Jia, C. & Devereaux, T. P. Gauge invariance of light–matter interactions in first-principle tight-binding models. Phys. Rev. B 103, 155409 (2021).

    ADS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 848411 title AuDACE), from MIUR PRIN aSTAR (grant no. 2017RKWTMY) and Laserlab-Europe EU-H2020 GA no. 871124.

Author information

Authors and Affiliations

Authors

Contributions

G.I, L.A. and A.E. contributed equally to this work. M.L., M.N. and R.B.-V. conceived the experiment. G.I, N.D.P, G.L.D. and B.M. performed the measurements and contributed to the definition of the experimental procedures. G.I. evaluated and analysed the results, calculated the sample absorption and estimated the experimental excited electron density. A.L. and A.M. provided the samples. L.A., S.P. and C.A.R. designed, performed and analysed DFT and TDDFT simulations. L.J.D'O. and A.A. performed initial DFT calculations. A.E.-a. and A.A. developed DPOA, computed the dynamical bands and evaluated the inter/intra-band contributions. L.D. and A.E. computed electron populations in DPOA. All authors participated in the scientific discussion. G.I. and M.L. wrote the first version of the paper to which all authors contributed.

Corresponding authors

Correspondence to Carlo Andrea Rozzi, Adolfo Avella or Matteo Lucchini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Michael Zuerch, Vladislav Yakovlev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Discussion and Table 1.

Supplementary Video 1

Time-dependent 3D representation in the reciprocal space of the number of excited electrons.

Supplementary Video 2

Time-dependent evolution of the pumped band structure.

Source data

Source Data Fig. 1–4

Source data of Fig. 1–4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inzani, G., Adamska, L., Eskandari-asl, A. et al. Field-driven attosecond charge dynamics in germanium. Nat. Photon. 17, 1059–1065 (2023). https://doi.org/10.1038/s41566-023-01274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01274-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing