Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer proteogenomics: current impact and future prospects

Abstract

Genomic analyses in cancer have been enormously impactful, leading to the identification of driver mutations and development of targeted therapies. But the functions of the vast majority of somatic mutations and copy number variants in tumours remain unknown, and the causes of resistance to targeted therapies and methods to overcome them are poorly defined. Recent improvements in mass spectrometry-based proteomics now enable direct examination of the consequences of genomic aberrations, providing deep and quantitative characterization of tumour tissues. Integration of proteins and their post-translational modifications with genomic, epigenomic and transcriptomic data constitutes the new field of proteogenomics, and is already leading to new biological and diagnostic knowledge with the potential to improve our understanding of malignant transformation and therapeutic outcomes. In this Review we describe recent developments in proteogenomics and key findings from the proteogenomic analysis of a wide range of cancers. Considerations relevant to the selection and use of samples for proteogenomics and the current technologies used to generate, analyse and integrate proteomic with genomic data are described. Applications of proteogenomics in translational studies and immuno-oncology are rapidly emerging, and the prospect for their full integration into therapeutic trials and clinical care seems bright.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical proteogenomics data.
Fig. 2: Proteogenomic data analyses for biological insight via cloud computing.
Fig. 3: LC-MS/MS workflow for proteomics in CPTAC studies.

Similar content being viewed by others

References

  1. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Awad, M. M. & Shaw, A. T. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol. 12, 429–439 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Brown, A.-L., Li, M., Goncearenco, A. & Panchenko, A. R. Finding driver mutations in cancer: elucidating the role of background mutational processes. PLoS Comput. Biol. 15, e1006981 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Krug, K. et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183, 1436–1456.e31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Satpathy, S. et al. Microscaled proteogenomic methods for precision oncology. Nat. Commun. 11, 532 (2020). This proteogenomic study of core needle biopsy samples establishes proof of concept for genomic and proteomic profiling starting from small sample quantities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krug, K., Nahnsen, S. & Macek, B. Mass spectrometry at the interface of proteomics and genomics. Mol. Biosyst. 7, 284–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Menschaert, G. & Fenyö, D. Proteogenomics from a bioinformatics angle: a growing field. Mass. Spectrom. Rev. 36, 584–599 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11, 1114–1125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruggles, K. V. et al. Methods, tools and current perspectives in proteogenomics. Mol. Cell. Proteom. 16, 959–981 (2017). This work reviews the tools and techniques used to analyse proteogenomics data.

    Article  CAS  Google Scholar 

  13. Zhang, B. et al. Clinical potential of mass spectrometry-based proteogenomics. Nat. Rev. Clin. Oncol. 16, 256–268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396–410.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y.-J. et al. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182, e17 (2020). This comprehensive proteogenomic study includes a large number of samples and multiple omics data types, focusing on the biology of LUAD in non-smokers.

    Article  Google Scholar 

  16. Clark, D. J. et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179, 964–983.e31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dou, Y. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180, 729–748.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, Q. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–577.e22 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200–225.e35 (2020). This typical CPTAC proteogenomic study with extensive data and expansive analyses characterizes LUAD biology and therapeutic possibilities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McDermott, J. E. et al. Proteogenomic characterization of ovarian HGSC implicates mitotic kinases, replication stress in observed chromosomal instability. Cell Rep. Med. 1, 100004 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mun, D.-G. et al. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 35, 111–124.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Petralia, F. et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183, 1962–1985.e31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Satpathy, S. et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell 184, 4348–4371.e40 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Stewart, P. A. et al. Proteogenomic landscape of squamous cell lung cancer. Nat. Commun. 10, 3578 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, C. et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39, 361–379.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, H. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, L.-B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39, 509–528.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johansson, H. J. et al. Breast cancer quantitative proteome and proteogenomic landscape. Nat. Commun. 10, 1600 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sinha, A. et al. The proteogenomic landscape of curable prostate cancer. Cancer Cell 35, 414–427.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, M. et al. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Commun. 10, 1519 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li, C. et al. Integrated omics of metastatic colorectal cancer. Cancer Cell 38, 734–747.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Aure, M. R. et al. Integrative clustering reveals a novel split in the luminal A subtype of breast cancer with impact on outcome. Breast Cancer Res. 19, 44 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hu, Y. et al. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 33, 108276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan, J. et al. Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat. Commun. 11, 6139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Austen, M., Cerni, C., Lüscher-Firzlaff, J. M. & Lüscher, B. YY1 can inhibit c-Myc function through a mechanism requiring DNA binding of YY1 but neither its transactivation domain nor direct interaction with c-Myc. Oncogene 17, 511–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  CAS  Google Scholar 

  40. Xu, J.-Y. et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261.e17 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Roper, N. et al. APOBEC mutagenesis and copy-number alterations are drivers of proteogenomic tumor evolution and heterogeneity in metastatic thoracic tumors. Cell Rep. 26, 2651–2666.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  CAS  Google Scholar 

  43. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yuan, G. et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 590, 504–508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yanovich-Arad, G. et al. Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep. 34, 108787 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Harding, J. & Burtness, B. Cetuximab: an epidermal growth factor receptor chemeric human–murine monoclonal antibody. Drugs Today 41, 107–127 (2005).

    Article  CAS  Google Scholar 

  48. Seiwert, T. Y. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 17, 956–965 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rivero-Hinojosa, S. et al. Proteomic analysis of medulloblastoma reveals functional biology with translational potential. Acta Neuropathol. Commun. 6, 48 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Forget, A. et al. Aberrant ERBB4–SRC signaling as a hallmark of Group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer Cell 34, 379–395.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Latonen, L. et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat. Commun. 9, 1176 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bateman, N. W. et al. Proteogenomic landscape of uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer patients. Sci. Rep. 11, 9371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Flores-Morales, A. et al. Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res. 25, 595–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Huang, K.-L. et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat. Commun. 8, 14864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mundt, F. et al. Mass spectrometry-based proteomics reveals potential roles of NEK9 and MAP2K4 in resistance to PI3K inhibition in triple-negative breast cancers. Cancer Res. 78, 2732–2746 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sheth, M., Zhang, J. & Zenklusen, J. C. Collaborative Genomics Projects: A Comprehensive Guide Ch. 4 (Academic, 2016).

  60. Mertins, P. et al. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell. Proteom. 13, 1690–1704 (2014).

    Article  CAS  Google Scholar 

  61. Mertins, P. et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 13, 1632–1661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Petralia, F. et al. BayesDeBulk: a flexible bayesian algorithm for the deconvolution of bulk tumor data. bioRxiv https://doi.org/10.1101/2021.06.25.449763 (2021).

    Article  Google Scholar 

  64. Buczak, K. et al. Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nat. Protoc. 15, 2956–2979 (2020). This work uses laser-capture microdissection followed by MS to profile FFPE tissues to quantify intratumour heterogeneity.

    Article  CAS  PubMed  Google Scholar 

  65. Ezzoukhry, Z. et al. Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat. Commun. 9, 2031 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Fan, Y. et al. Proteomic profiling of gastric signet ring cell carcinoma tissues reveals characteristic changes of the complement cascade pathway. Mol. Cell. Proteom. 20, 100068 (2021).

    Article  CAS  Google Scholar 

  67. Großerueschkamp, F. et al. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics. Sci. Rep. 7, 44829 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hiroshima, Y. et al. Novel targets identified by integrated cancer–stromal interactome analysis of pancreatic adenocarcinoma. Cancer Lett. 469, 217–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Staunton, L. et al. Pathology-driven comprehensive proteomic profiling of the prostate cancer tumor microenvironment. Mol. Cancer Res. 15, 281–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Zupa, A. et al. A pilot characterization of human lung NSCLC by protein pathway activation mapping. J. Thorac. Oncol. 7, 1755–1766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corchete, L. A. et al. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci. Rep. 10, 19737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pabinger, S. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief. Bioinform. 15, 256–278 (2014).

    Article  PubMed  Google Scholar 

  73. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schroeder, C. M. et al. A comprehensive quality control workflow for paired tumor–normal NGS experiments. Bioinformatics 33, 1721–1722 (2017).

    CAS  PubMed  Google Scholar 

  77. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Bian, X. et al. Comparing the performance of selected variant callers using synthetic data and genome segmentation. BMC Bioinforma. 19, 429 (2018).

    Article  CAS  Google Scholar 

  79. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    Article  CAS  Google Scholar 

  82. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–11.10.33 (2013).

    Article  Google Scholar 

  87. Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kim, S. & Pevzner, P. A. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 5, 5277 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020). This work presents a pipeline for processing MS data.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rudnick, P. A. et al. A description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) common data analysis pipeline. J. Proteome Res. 15, 1023–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, C., Hou, J., Tanner, J. J. & Cheng, J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci. 21, 2873 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  94. Ma, W. et al. DreamAI: algorithm for the imputation of proteomics data. bioRxiv https://doi.org/10.1101/2020.07.21.214205 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang, X. & Zhang, B. customProDB: an R package to generate customized protein databases from RNA-seq data for proteomics search. Bioinformatics 29, 3235–3237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ruggles, K. V. et al. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol. Cell. Proteom. 15, 1060–1071 (2016). This work uses mutations identified in DNA and RNA to detect mutated peptides in corresponding proteins.

    Article  CAS  Google Scholar 

  97. Johnson, W. E., Evan Johnson, W., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  98. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Song, X. et al. Insights into impact of DNA copy number alteration and methylation on the proteogenomic landscape of human ovarian cancer via a multi-omics integrative analysis. Mol. Cell. Proteom. 18, S52–S65 (2019).

    Article  Google Scholar 

  100. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45, W130–W137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteom. 18, 576–593 (2019). This work introduces a pathway database resource based on phosphosites, along with determination of site-specific enrichment.

    Article  CAS  Google Scholar 

  103. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Wen, B. et al. Deep learning in proteomics. Proteomics 20, e1900335 (2020).

    Article  PubMed  CAS  Google Scholar 

  105. Coscia, F. et al. Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer. Cell 175, 159–170.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kelly, R. T. Single-cell proteomics: progress and prospects. Mol. Cell. Proteom. 19, 1739–1748 (2020). This work reviews strategies for proteomic profiling of single cells and samples with very low input amounts.

    Article  CAS  Google Scholar 

  108. Slavov, N. Single-cell protein analysis by mass spectrometry. Curr. Opin. Chem. Biol. 60, 1–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Tsai, C.-F. et al. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol. Cell. Proteom. 19, 828–838 (2020).

    Article  CAS  Google Scholar 

  110. Rodriguez, H., Zenklusen, J. C., Staudt, L. M., Doroshow, J. H. & Lowy, D. R. The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell 184, 1661–1670 (2021). This work is a perspective on the role of proteogenomics in the diagnosis and treatment of patients with cancer, and its promise for precision oncology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Lössl, P., van de Waterbeemd, M. & Heck, A. Jr The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 35, 2634–2657 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhang, G., Annan, R. S., Carr, S. A. & Neubert, T. A. Overview of peptide and protein analysis by mass spectrometry. Curr. Protoc. Protein Sci. 62, 16.1.1–16.1.30 (2010).

    Article  Google Scholar 

  114. Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thompson, A. et al. TMTpro: design, synthesis, and initial evaluation of a proline-based isobaric 16-plex Tandem Mass Tag reagent set. Anal. Chem. 91, 15941–15950 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Marchione, D. M. et al. HYPERsol: high-quality data from archival FFPE tissue for clinical proteomics. J. Proteome Res. 19, 973–983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Piehowski, P. D. et al. Residual tissue repositories as a resource for population-based cancer proteomic studies. Clin. Proteom. 15, 26 (2018).

    Article  CAS  Google Scholar 

  119. Hebert, A. S. et al. Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Anal. Chem. 90, 9529–9537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schweppe, D. K. et al. Characterization and optimization of multiplexed quantitative analyses using high-field asymmetric-waveform ion mobility mass spectrometry. Anal. Chem. 91, 4010–4016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Udeshi, N. D. et al. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat. Commun. 11, 359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Erickson, B. K. et al. Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows. J. Proteome Res. 18, 1299–1306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chapman, J. D., Goodlett, D. R. & Masselon, C. D. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass. Spectrom. Rev. 33, 452–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Betancourt, L. H. et al. The human melanoma proteome atlas—defining the molecular pathology. Clin. Transl. Med. 11, e473 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Meier-Abt, F. et al. The protein landscape of chronic lymphocytic leukemia (CLL). Blood 138, 2514–2525 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Mell, P. M. & Grance, T. The NIST definition of cloud computing. https://doi.org/10.6028/nist.sp.800-145 (National Institute of Standards and Technology, 2011).

  127. Birger, C. et al. FireCloud, a scalable cloud-based platform for collaborative genome analysis: strategies for reducing and controlling costs. bioRxiv https://doi.org/10.1101/209494 (2017).

    Article  Google Scholar 

  128. Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (‘O’Reilly Media, 2020).

  129. Mani, D. R. et al. PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis. Nat. Methods 18, 580–582 (2021). This work presents an open-source pipeline for comprehensive and integrated analysis of proteogenomics data, encapsulating common methods from published flagship studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Bantscheff, M. et al. Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol. Cell. Proteom. 7, 1702–1713 (2008).

    Article  CAS  Google Scholar 

  132. Gan, C. S., Chong, P. K., Pham, T. K. & Wright, P. C. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J. Proteome Res. 6, 821–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Karp, N. A. et al. Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell. Proteom. 9, 1885–1897 (2010).

    Article  CAS  Google Scholar 

  134. Mertins, P. et al. iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell. Proteom. 11, M111.014423 (2012).

    Article  CAS  Google Scholar 

  135. Ow, S. Y. et al. iTRAQ underestimation in simple and complex mixtures: ‘the good, the bad and the ugly’. J. Proteome Res. 8, 5347–5355 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Savitski, M. M. et al. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J. Proteome Res. 12, 3586–3598 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Svinkina, T. et al. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell. Proteom. 14, 2429–2440 (2015).

    Article  CAS  Google Scholar 

  138. Chen, R., Im, H. & Snyder, M. Whole-exome enrichment with the illumina truseq exome enrichment platform. Cold Spring Harb. Protoc. 2015, 642–648 (2015).

    PubMed  Google Scholar 

  139. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    Article  PubMed  CAS  Google Scholar 

  141. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. [No authors listed]. Method of the year 2013. Nat. Methods 11, 1 (2014).

    Article  CAS  Google Scholar 

  143. Choi, J. R., Yong, K. W., Choi, J. Y. & Cowie, A. C. Single-cell RNA requencing and its combination with protein and DNA analyses. Cells 9, 1130 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  144. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Sasagawa, Y. et al. Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 14, R31 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq. Mol. Cell 68, 1006–1015.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ji, Z., Zhou, W., Hou, W. & Ji, H. Single-cell ATAC-seq signal extraction and enhancement with SCATE. Genome Biol. 21, 161 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Yu, W., Uzun, Y., Zhu, Q., Chen, C. & Tan, K. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data. Genome Biol. 21, 94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Udeshi, N. D. et al. Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol. Cell. Proteom. 12, 825–831 (2013).

    Article  CAS  Google Scholar 

  153. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteom. 10, M111.013284 (2011).

    Article  CAS  Google Scholar 

  154. Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10, 634–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vasaikar, S. V., Straub, P., Wang, J. & Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46, D956–D963 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, P. et al. Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the cBioPortal. Mol. Cell. Proteom. 18, 1893–1898 (2019).

    Article  CAS  Google Scholar 

  157. Lindgren, C. M. et al. Simplified and unified access to cancer proteogenomic data. J. Proteome Res. 20, 1902–1910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Geiszler, D. J. et al. PTM-shepherd: analysis and summarization of post-translational and chemical modifications from open search results. Mol. Cell. Proteom. 20, 100018 (2020).

    Article  Google Scholar 

  162. Yu, F. et al. Fast quantitative analysis of timstof PASEF data with MSFragger and IonQuant. Mol. Cell. Proteom. 19, 1575–1585 (2020).

    Article  CAS  Google Scholar 

  163. Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell. Proteom. 20, 100077 (2021).

    Article  CAS  Google Scholar 

  164. Shi, Z., Wang, J. & Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks. Nat. Methods 10, 597–598 (2013). This work presents a network analysis and visualization tool supporting analysis of multi-omics data in a web-based, easy to use, interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Petralia, F. et al. A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity. Bioinformatics 34, i528–i536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Tyanova, S. & Cox, J. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711, 133–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Wen, B., Wang, X. & Zhang, B. PepQuery enables fast, accurate, and convenient proteomic validation of novel genomic alterations. Genome Res. 29, 485–493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wen, B., Li, K., Zhang, Y. & Zhang, B. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nat. Commun. 11, 1759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rudolph, J. D., de Graauw, M., van de Water, B., Geiger, T. & Sharan, R. Elucidation of signaling pathways from large-scale phosphoproteomic data using protein interaction networks. Cell Syst. 3, 585–593.e3 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Huang, K.-L. et al. Spatially interacting phosphorylation sites and mutations in cancer. Nat. Commun. 12, 2313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Blumenberg, L. et al. BlackSheep: a Bioconductor and Bioconda package for differential extreme value analysis. J. Proteome Res. 20, 3767–3773 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res. 49, D613–D621 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) through grants U24CA160034 (to S.A.C.), U24CA210986 (to S.A.C. and M.A.G.), U01CA214125 (to M.E. and S.A.C.), U24CA210979 (to D.R.M.), U24CA210954 (to B.Z.), U24CA210972, U2CCA233303, U54CA224083, U24CA211006 and R01HG009711 (to L.D.) and P50CA186784 (to M.E). M.E. is a Susan G. Komen Foundation Scholar, a McNair Scholar supported by the McNair Medical Institute at The Robert and Janice McNair Foundation, and a recipient of a CPRIT (Cancer Prevention and Research Institute of Texas) Established Investigator Award (RR140027). B.Z. was supported by CPRIT award RR160027 and funding from the McNair Medical Institute at The Robert and Janice McNair Foundation, and is a CPRIT Scholar in Cancer Research and a McNair scholar. The authors thank J. Abelin at the Broad Institute and M. Anurag at the Baylor College of Medicine for their input to the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to drafting the overall structure and flow of the manuscript. Subsequently, authors contributed subsections based on their domain of expertise and involvement in relevant studies. D.R.M., K.K., M.A.G. and S.A.C. integrated subsections, incorporated reviewer comments and performed additional revisions.

Corresponding authors

Correspondence to D. R. Mani or Steven A. Carr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Thomas Kislinger, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Black Sheep: https://github.com/ruggleslab/blackSheep

cBioPortal: https://www.cbioportal.org/

CDAP: https://pdc.cancer.gov/data-dictionary/harmonization.html

Clinical Proteomic Tumor Analysis Consortium (CPTAC): https://proteomics.cancer.gov/programs/cptac

COSMO: https://github.com/bzhanglab/COSMO

CPTAC (Python package): https://pypi.org/project/cptac/

customProDB: http://bioconductor.org/packages/release/bioc/html/customProDB.html

DreamAI: https://github.com/WangLab-MSSM/DreamAI

FragPipe: https://fragpipe.nesvilab.org/

Genomic Data Commons (GDC): https://gdc.cancer.gov

Genomic Data Commons (GDC) CPTAC Project: https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/clinical-proteomic-tumor-analysis-consortium-cptac

HotPho: https://github.com/ding-lab/HotPho_Analysis

International Cancer Proteogenome Consortium (ICPC): https://icpc.cancer.gov/portal

IonQuant: http://ionquant.nesvilab.org/

iProFun: https://rdrr.io/github/songxiaoyu/iProFun/

LinkedOmics: http://www.linkedomics.org/

MassQC: https://massqc.proteomesoftware.com/

MaxQuant: https://www.maxquant.org/

MSFragger: http://msfragger.nesvilab.org/

MSInspector: https://skyline.ms/skyts/home/software/Skyline/tools/details.view?name=MSInspector

multiOmicsViz: https://www.bioconductor.org/packages/release/bioc/html/multiOmicsViz.html

NeoFlow: https://github.com/bzhanglab/neoflow

NetGestalt: http://www.netgestalt.org/

NetSAM: http://www.bioconductor.org/packages/release/bioc/html/NetSAM.html

OmicsEV: https://bzhanglab.github.io/OmicsEV/

PANOPLY: https://github.com/broadinstitute/PANOPLY

Panoptes (1): https://github.com/rhong3/Panoptes

Panoptes (2): https://pypi.org/project/panoptes-he/

PANORAMA: https://panoramaweb.org/home/project-begin.view

Perseus: https://www.maxquant.org/perseus/

PepQuery: http://pepquery.org

Philosopher: https://philosopher.nesvilab.org/

PHOTON: https://github.com/jdrudolph/photon

ProNetView: http://ccrcc.cptac-network-view.org/

Proteomic Data Commons (PDC): https://pdc.cancer.gov

PTMcosmos: https://ptmcosmos.wustl.edu/

PTMsigDB: https://ptmsigdb.org

PTM-SEA: https://github.com/broadinstitute/ssGSEA2.0

PTM-Shepherd: https://ptmshepherd.nesvilab.org/

QUILTS: https://github.com/ekawaler/pyQUILTS

Skyline: https://skyline.ms/project/home/software/Skyline/begin.view

Spectrum Mill: https://proteomics.broadinstitute.org/

Terra: https://app.terra.bio

The Cancer Imaging Archive: https://www.cancerimagingarchive.net

The Cancer Imaging Archive: https://wiki.cancerimagingarchive.net/display/Public/CPTAC+Imaging+Proteomics

TMT-Integrator: https://github.com/Nesvilab/TMT-Integrator

TSNet: https://github.com/petraf01/TSNet

WebGestalt: http://www.webgestalt.org

WikiPathways: https://www.wikipathways.org/index.php/Portal:CPTAC

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, D.R., Krug, K., Zhang, B. et al. Cancer proteogenomics: current impact and future prospects. Nat Rev Cancer 22, 298–313 (2022). https://doi.org/10.1038/s41568-022-00446-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00446-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer