Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films

Subjects

Abstract

The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2–H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CO2 emissions and storage potentials.
Fig. 2: Thermophysical properties of CO2 and reaction environments.
Fig. 3: Carbonation kinetics in water-rich versus wet supercritical CO2 fluids.
Fig. 4: Aqueous carbonation reaction mechanism.
Fig. 5: Properties of nanoconfined water.
Fig. 6: The mechanistic picture of carbon mineralization in humidified CO2.
Fig. 7: Reactivity of the forsterite (Mg2SiO4) carbonation system in adsorbed water nanofilms.

Similar content being viewed by others

References

  1. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. UNFCCC. The Paris Agreement. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2015).

  3. Kelemen, P. B. in Negative Emissions Technologies and Reliable Sequestration: a Research Agenda Ch. 6 (National Academies Press, 2019).

  4. Matter, J. M. et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352, 1312–1314 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. McGrail, B. P. et al. Field validation of supercritical CO2 reactivity with basalts. Environ. Sci. Technol. Lett. 4, 6–10 (2017).

    Article  CAS  Google Scholar 

  6. Matter, J. M., Takahashi, T. & Goldberg, D. Experimental evaluation of in situ CO2–water–rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration. Geochem. Geophys. Geosystems https://doi.org/10.1029/2006GC001427 (2007).

    Article  Google Scholar 

  7. McGrail, B. P. et al. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2005JB004169 (2006).

    Article  Google Scholar 

  8. Goldberg, D. S., Takahashi, T. & Slagle, A. L. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl Acad. Sci. USA 105, 9920–9925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldberg, D. S., Kent, D. V. & Olsen, P. E. Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts. Proc. Natl Acad. Sci. USA 107, 1327–1332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marieni, C., Henstock, T. J. & Teagle, D. A. H. Geological storage of CO2 within the oceanic crust by gravitational trapping. Geophys. Res. Lett. 40, 6219–6224 (2013).

    Article  CAS  Google Scholar 

  11. Snæbjörnsdóttir, S. Ó. et al. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia 63, 4585–4600 (2014).

    Article  CAS  Google Scholar 

  12. Gislason, S. R. & Oelkers, E. H. Carbon storage in basalt. Science 344, 373–374 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article  CAS  Google Scholar 

  14. Gadikota, G. & Park, A. A. in Carbon Dioxide Utilisation (eds Styring, P., Quadrelli, E. A. & Armstrong, K.) 115–137 (Elsevier, 2015).

  15. Gadikota, G., Matter, J., Kelemen, P., Brady, P. V. & Park, A.-H. A. Elucidating the differences in the carbon mineralization behaviors of calcium and magnesium bearing alumino-silicates and magnesium silicates for CO2 storage. Fuel 277, 117900 (2020).

    Article  CAS  Google Scholar 

  16. Power, I. M. et al. Strategizing carbon-neutral mines: a case for pilot projects. Minerals 4, 399–436 (2014).

    Article  Google Scholar 

  17. Wilson, S. A. et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas Control 25, 121–140 (2014).

    Article  CAS  Google Scholar 

  18. Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. & Eisele, T. C. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J. Hazard. Mater. 168, 31–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Stolaroff, J. K., Lowry, G. V. & Keith, D. W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Convers. Manag. 46, 687–699 (2005).

    Article  CAS  Google Scholar 

  20. Rim, G. et al. CO2 utilization in built environment via the PCO2 swing carbonation of alkaline solid wastes with different mineralogy. Faraday Discuss. 230, 187–212 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. O’Connor, W. K., Dahlin, D. C., Rush, G. E., Dahlin, C. L. & Collins, W. K. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Min. Metall. Explor. 19, 95–101 (2002).

    Google Scholar 

  22. National Academies of Sciences, Engineering and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies of Sciences, Engineering, and Medicine, 2018).

  23. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. & Maroto-Valer, M. M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 43, 8049–8080 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Fernández Bertos, M., Simons, S. J. R., Hills, C. D. & Carey, P. J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 112, 193–205 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Spycher, N., Pruess, K. & Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim. Cosmochim. Acta 67, 3015–3031 (2003).

    Article  CAS  Google Scholar 

  27. Spycher, N. & Pruess, K. A phase-partitioning model for CO2–brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp. Porous Media 82, 173–196 (2010). The mutual solubilities of CO2 and water over a comprehensive range of pressure, temperature and composition are presented and provide a vital starting point for understanding CO2-bearing thin water films.

    Article  CAS  Google Scholar 

  28. Span, R. & Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996).

    Article  CAS  Google Scholar 

  29. Huber, M. et al. NIST reference fluid thermodynamic and transport properties database (REFPROP) version 10 — SRD 23 (NIST, 2018).

  30. Matter, J. M. & Kelemen, P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837–841 (2009).

    Article  CAS  Google Scholar 

  31. McGrail, B. P., Spane, F. A., Sullivan, E. C., Bacon, D. H. & Hund, G. The Wallula basalt sequestration pilot project. Energy Procedia 4, 5653–5660 (2011).

    Article  Google Scholar 

  32. McGrail, B. P. et al. Wallula basalt pilot demonstration project: post-injection results and conclusions. Energy Procedia 114, 5783–5790 (2017).

    Article  CAS  Google Scholar 

  33. Pogge von Strandmann, P. A. E. et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat. Commun. 10, 1983 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. White, S. K. et al. Quantification of CO2 mineralization at the Wallula Basalt Pilot Project. Environ. Sci. Technol. 54, 14609–14616 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Kaszuba, J. P., Williams, L. L., Janecky, D. R., Hollis, W. K. & Tsimpanogiannis, I. N. Immiscible CO2–H2O fluids in the shallow crust. Geochem. Geophys. Geosyst. 7, Q10003 (2006).

    Article  CAS  Google Scholar 

  36. Yardley, B. W. D. & Bodnar, R. J. Fluids in the continental crust. Geochem. Perspect. 3, 1–2 (2014).

    Article  Google Scholar 

  37. Cardoso, S. S. S. & Andres, J. T. H. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers. Nat. Commun. 5, 5743 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Loring, J. S., Miller, Q. R. S., Thompson, C. J. & Schaef, H. T. in Science of Carbon Storage in Deep Saline Formations (eds Newell, P. & Ilgen, A. G.) 63–88 (Elsevier, 2019).

  39. Gaus, I. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenh. Gas Control 4, 73–89 (2010).

    Article  CAS  Google Scholar 

  40. Elkhoury, J. E., Ameli, P. & Detwiler, R. L. Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions. Int. J. Greenh. Gas Control 16, S203–S215 (2013).

    Article  CAS  Google Scholar 

  41. Bourg, I. C., Beckingham, L. E. & DePaolo, D. J. The nanoscale basis of CO2 trapping for geologic storage. Environ. Sci. Technol. 49, 10265–10284 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Jun, Y.-S., Zhang, L., Min, Y. & Li, Q. Nanoscale chemical processes affecting storage capacities and seals during geologic CO2 sequestration. Acc. Chem. Res. 50, 1521–1529 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Choens, R. C. et al. Impacts on mechanical strength of chemical reactions induced by hydrous supercritical CO2 in Boise Sandstone. Int. J. Greenh. Gas Control 95, 102982 (2020).

    Article  CAS  Google Scholar 

  44. Rimmelé, G., Barlet-Gouédard, V. & Renard, F. Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth. Oil Gas. Sci. Technol. 65, 565–580 (2010).

    Article  CAS  Google Scholar 

  45. Loring, J. S. et al. In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. Environ. Sci. Technol. 45, 6204–6210 (2011). The first direct observation of reactive thin water film development on mineral surfaces exposed to wet scCO2.

    Article  CAS  PubMed  Google Scholar 

  46. Miller, Q. R. S. et al. Anomalously low activation energy of nanoconfined MgCO3 precipitation. Chem. Commun. 55, 6835–6837 (2019). The first study to quantify carbonation kinetics in thin water films, and the temperature dependence of the reaction rate suggested that the nanoconfined Mg2+ hydration configuration is responsible for facile magnesite precipitation in thin water films relative to the bulk.

    Article  CAS  Google Scholar 

  47. Miller, Q. R. S. et al. Surface-catalyzed oxygen exchange during mineral carbonation in nanoscale water films. J. Phys. Chem. C 123, 12871–12885 (2019).

    Article  CAS  Google Scholar 

  48. Loring, J. S. et al. Evidence for carbonate surface complexation during forsterite carbonation in wet supercritical carbon dioxide. Langmuir 31, 7533–7543 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Felmy, A. R. et al. Reaction of water-saturated supercritical CO2 with forsterite: evidence for magnesite formation at low temperatures. Geochim. Cosmochim. Acta 91, 271–282 (2012).

    Article  CAS  Google Scholar 

  50. Schaef, H. T. et al. Forsterite [Mg2SiO4)] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study. Environ. Sci. Technol. 47, 174–181 (2013).

    Article  CAS  Google Scholar 

  51. Lacinska, A. M., Styles, M. T., Bateman, K., Hall, M. & Brown, P. D. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites. Front. Earth Sci. 5, 37 (2017).

    Article  Google Scholar 

  52. Ming, X.-R. et al. Thin-film dawsonite in Jurassic coal measure strata of the Yaojie coalfield, Minhe Basin, China: a natural analogue for mineral carbon storage in wet supercritical CO2. Int. J. Coal Geol. 180, 83–99 (2017).

    Article  CAS  Google Scholar 

  53. Miller, Q. R. S. et al. Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. Int. J. Greenh. Gas Control 15, 104–118 (2013).

    Article  CAS  Google Scholar 

  54. Placencia-Gómez, E. et al. Critical water coverage during forsterite carbonation in thin water films: activating dissolution and mass transport. Environ. Sci. Technol. 54, 6888–6899 (2020).

    Article  PubMed  CAS  Google Scholar 

  55. Miller, Q. R. S. et al. Tunable manipulation of mineral carbonation kinetics in nanoscale water films via citrate additives. Environ. Sci. Technol. 52, 7138–7148 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Chai, Y. E. et al. Pressurized in situ X-ray diffraction insights into super/subcritical carbonation reaction pathways of steelmaking slags and constituent silicate minerals. J. Supercrit. Fluids 171, 105191 (2021).

    Article  CAS  Google Scholar 

  57. Loring, J. S. et al. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide. J. Phys. Chem. A 116, 4768–4777 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, X., Alvarado, V., Swoboda-Colberg, N. & Kaszuba, J. P. Reactivity of dolomite in water-saturated supercritical carbon dioxide: significance for carbon capture and storage and for enhanced oil and gas recovery. Energy Convers. Manag. 65, 564–573 (2013).

    Article  CAS  Google Scholar 

  59. Lea, A. S., Higgins, S. R., Knauss, K. G. & Rosso, K. M. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide. Rev. Sci. Instrum. 82, 043709 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Qafoku, O. et al. Formation of submicron magnesite during reaction of natural forsterite in H2O-saturated supercritical CO2. Geochim. Cosmochim. Acta 134, 197–209 (2014).

    Article  CAS  Google Scholar 

  61. Mergelsberg, S. T. et al. Low temperature and limited water activity reveal a pathway to magnesite via amorphous magnesium carbonate. Chem. Commun. 56, 12154–12157 (2020). This study expanded the temperature of abiotic magnesite precipitation in thin water films down to ambient temperature while hinting at amorphous carbonate phase stabilization in low water activity interfaces.

    Article  CAS  Google Scholar 

  62. Power, I. M., Kenward, P. A., Dipple, G. M. & Raudsepp, M. Room temperature magnesite precipitation. Cryst. Growth Des. 17, 5652–5659 (2017).

    Article  CAS  Google Scholar 

  63. Xu, J. et al. Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems. Proc. Natl Acad. Sci. USA 110, 17750–17755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gadikota, G. Multiphase carbon mineralization for the reactive separation of CO2 and directed synthesis of H2. Nat. Rev. Chem. 4, 78–89 (2020).

    Article  CAS  Google Scholar 

  65. Ruiz-Lopez, M. F., Francisco, J. S., Martins-Costa, M. T. & Anglada, J. M. Molecular reactions at aqueous interfaces. Nat. Rev. Chem. 4, 459–475 (2020).

    Article  CAS  Google Scholar 

  66. Giammar, D. E., Bruant, R. G. & Peters, C. A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem. Geol. 217, 257–276 (2005).

    Article  CAS  Google Scholar 

  67. Rim, G., Marchese, A. K., Stallworth, P., Greenbaum, S. G. & Park, A.-H. A. 29Si solid state MAS NMR study on leaching behaviors and chemical stability of different Mg-silicate structures for CO2 sequestration. Chem. Eng. J. 396, 125204 (2020).

    Article  CAS  Google Scholar 

  68. Schott, J. et al. Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite. Geochim. Cosmochim. Acta 98, 259–281 (2012).

    Article  CAS  Google Scholar 

  69. Miller, Q. R. S. et al. Quantitative review of olivine carbonation kinetics: reactivity trends, mechanistic insights, and research frontiers. Environ. Sci. Technol. Lett. 6, 431–442 (2019).

    Article  CAS  Google Scholar 

  70. Nielsen, M. H., Aloni, S. & Yoreo, J. J. D. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Blue, C. R. et al. Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO3 polymorphs. Geochim. Cosmochim. Acta 196, 179–196 (2017).

    Article  CAS  Google Scholar 

  72. Cheng, W. & Li, Z. Precipitation of nesquehonite from homogeneous supersaturated solutions. Cryst. Res. Technol. 44, 937–947 (2009).

    Article  CAS  Google Scholar 

  73. Chaka, A. M. & Felmy, A. R. Ab initio thermodynamic model for magnesium carbonates and hydrates. J. Phys. Chem. A 118, 7469–7488 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Hänchen, M., Prigiobbe, V., Baciocchi, R. & Mazzotti, M. Precipitation in the Mg-carbonate system — effects of temperature and CO2 pressure. Chem. Eng. Sci. 63, 1012–1028 (2008).

    Article  CAS  Google Scholar 

  75. Adam, L., van Wijk, K., Otheim, T. & Batzle, M. Changes in elastic wave velocity and rock microstructure due to basalt-CO2-water reactions. J. Geophys. Res. Solid Earth 118, 4039–4047 (2013).

    Article  Google Scholar 

  76. Gysi, A. P. & Stefánsson, A. CO2–water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochim. Cosmochim. Acta 81, 129–152 (2012).

    Article  CAS  Google Scholar 

  77. Kanakiya, S., Adam, L., Esteban, L., Rowe, M. C. & Shane, P. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid. J. Geophys. Res. Solid Earth 122, 4312–4327 (2017).

    Article  CAS  Google Scholar 

  78. Kumar, A., Shrivastava, J. P. & Pathak, V. Mineral carbonation reactions under water-saturated, hydrothermal-like conditions and numerical simulations of CO2 sequestration in tholeiitic basalt of the Eastern Deccan Volcanic Province, India. Appl. Geochem. 84, 87–104 (2017).

    Article  CAS  Google Scholar 

  79. Laverne, C. Occurrence of siderite and ankerite in young basalts from the Galápagos Spreading Center (DSDP Holes 506 G and 507B). Chem. Geol. 106, 27–46 (1993).

    Article  CAS  Google Scholar 

  80. Prasad, P. S. R. et al. Geological sequestration of carbon dioxide in Deccan basalts: preliminary laboratory study. Curr. Sci. 96, 288–291 (2009).

    CAS  Google Scholar 

  81. Rogers, K. L., Neuhoff, P. S., Pedersen, A. K. & Bird, D. K. CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland. Lithos 92, 55–82 (2006).

    Article  CAS  Google Scholar 

  82. Schaef, H. T., McGrail, B. P. & Owen, A. T. Basalt–CO2–H2O interactions and variability in carbonate mineralization rates. Energy Procedia 1, 4899–4906 (2009).

    Article  CAS  Google Scholar 

  83. Schaef, H. T., McGrail, B. P. & Owen, A. T. Basalt reactivity variability with reservoir depth in supercritical CO2 and aqueous phases. Energy Procedia 4, 4977–4984 (2011).

    Article  CAS  Google Scholar 

  84. Yang, T. et al. Formation of zoned ankerite in gravity-flow sandstones in the Linnan Sag, Bohai Bay Basin, eastern China: evidence of episodic fluid flow revealed from in-situ trace elemental analysis. Mar. Pet. Geol. 113, 104139 (2020).

    Article  CAS  Google Scholar 

  85. Littlewood, J. L. et al. Mechanism of enhanced strontium uptake into calcite via an amorphous calcium carbonate crystallization pathway. Cryst. Growth Des. 17, 1214–1223 (2017).

    Article  CAS  Google Scholar 

  86. Li, Y. et al. Experimental study of shale-fluids interaction during oxidative dissolution with hydrogen peroxide, sodium hypochlorite and sodium persulfate. Appl. Geochem. 113, 104503 (2020).

    Article  CAS  Google Scholar 

  87. Menefee, A. H., Giammar, D. E. & Ellis, B. R. Permanent CO2 trapping through localized and chemical gradient-driven basalt carbonation. Environ. Sci. Technol. 52, 8954–8964 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Mergelsberg, S. T. et al. Metastable solubility and local structure of amorphous calcium carbonate (ACC). Geochim. Cosmochim. Acta 289, 196–206 (2020).

    Article  CAS  Google Scholar 

  89. Purgstaller, B., Goetschl, K. E., Mavromatis, V. & Dietzel, M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm 21, 155–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Radha, A. V. et al. Energetic and structural studies of amorphous Ca1−xMgxCO3·nH2O (0≤×≤1). Geochim. Cosmochim. Acta 90, 83–95 (2012).

    Article  CAS  Google Scholar 

  91. Whittaker, M. L. & Joester, D. ACBC to balcite: bioinspired synthesis of a highly substituted high-temperature phase from an amorphous precursor. Adv. Mater. 29, 1606730 (2017).

    Article  CAS  Google Scholar 

  92. Whittaker, M. L. et al. Structural basis for metastability in amorphous calcium barium carbonate (ACBC). Adv. Funct. Mater. 28, 1704202 (2018).

    Article  CAS  Google Scholar 

  93. Sissmann, O. et al. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration. Environ. Sci. Technol. 48, 5512–5519 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Kwak, J. H. et al. Metal carbonation of forsterite in supercritical CO2 and H2O using solid state 29Si, 13 C NMR spectroscopy. J. Phys. Chem. C. 114, 4126–4134 (2010).

    Article  CAS  Google Scholar 

  95. Eikeland, E., Blichfeld, A. B., Tyrsted, C., Jensen, A. & Iversen, B. B. Optimized carbonation of magnesium silicate mineral for CO2 storage. ACS Appl. Mater. Interfaces 7, 5258–5264 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Turri, L., Muhr, H., Rijnsburger, K., Knops, P. & Lapicque, F. CO2 sequestration by high pressure reaction with olivine in a rocking batch autoclave. Chem. Eng. Sci. 171, 27–31 (2017).

    Article  CAS  Google Scholar 

  97. Gadikota, G., Matter, J., Kelemen, P. & Park, A. A. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys. 16, 4679–4693 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Gerdemann, S. J., O’Connor, W. K., Dahlin, D. C., Penner, L. R. & Rush, H. Ex situ aqueous mineral carbonation. Environ. Sci. Technol. 41, 2587–2593 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Přikryl, J., Stefánsson, A. & Pearce, C. R. Tracing olivine carbonation and serpentinization in CO2-rich fluids via magnesium exchange and isotopic fractionation. Geochim. Cosmochim. Acta 243, 133–148 (2018).

    Article  CAS  Google Scholar 

  100. Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Jones, L. C., Rosenbauer, R., Goldsmith, J. I. & Oze, C. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts. Geophys. Res. Lett. https://doi.org/10.1029/2010GL043769 (2010).

    Article  Google Scholar 

  102. Klein, F. & McCollom, T. M. From serpentinization to carbonation: new insights from a CO2 injection experiment. Earth Planet. Sci. Lett. 379, 137–145 (2013).

    Article  CAS  Google Scholar 

  103. McCollom, T. M. et al. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim. Cosmochim. Acta 181, 175–200 (2016).

    Article  CAS  Google Scholar 

  104. Ueda, H., Sawaki, Y. & Maruyama, S. Reactions between olivine and CO2-rich seawater at 300 °C: Implications for H2 generation and CO2 sequestration on the early Earth. Geosci. Front. 8, 387–396 (2017).

    Article  CAS  Google Scholar 

  105. Shao, H., Ray, J. R. & Jun, Y.-S. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation. Environ. Sci. Technol. 45, 1737–1743 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Kolmogorov, A. N. A statistical theory for the recrystallization of metals. Izv. Akad. Nauk USSR Ser. Math. 1, 355–359 (1937).

    Google Scholar 

  107. Johnson, W. & Mehl, R. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416–442 (1939).

    Google Scholar 

  108. Avrami, M. Kinetics of phase change. I general theory. J. Chem. Phys. 7, 1103–1112 (1939).

    Article  CAS  Google Scholar 

  109. Oelkers, E. H., Gislason, S. R. & Matter, J. Mineral carbonation of CO2. Elements 4, 333–337 (2008).

    Article  CAS  Google Scholar 

  110. Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E. & Nagy, K. L. Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58, 2361–2386 (1994).

    Article  CAS  Google Scholar 

  111. Rimstidt, J. D., Brantley, S. L. & Olsen, A. A. Systematic review of forsterite dissolution rate data. Geochim. Cosmochim. Acta 99, 159–178 (2012).

    Article  CAS  Google Scholar 

  112. Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R. & Schott, J. Olivine dissolution rates: a critical review. Chem. Geol. 500, 1–19 (2018).

    Article  CAS  Google Scholar 

  113. Longo, R. C. et al. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory. ACS Appl. Mater. Interfaces 7, 4706–4712 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Giraudo, N. et al. Early stage hydration of wollastonite: kinetic aspects of the metal-proton exchange reaction. J. Phys. Chem. C 119, 10493–10499 (2015).

    Article  CAS  Google Scholar 

  115. Pokrovsky, O. S. & Schott, J. Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach. Geochim. Cosmochim. Acta 64, 3299–3312 (2000).

    Article  CAS  Google Scholar 

  116. Pokrovsky, O. S. & Schott, J. Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12. Geochim. Cosmochim. Acta 64, 3313–3325 (2000).

    Article  CAS  Google Scholar 

  117. Palandri, J. L. & Kharaka, Y. K. A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. DTIC https://apps.dtic.mil/docs/citations/ADA440035 (2004).

  118. Dove, P. M. & Crerar, D. A. Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim. Cosmochim. Acta 54, 955–969 (1990).

    Article  CAS  Google Scholar 

  119. Dove, P. M., Han, N. & Yoreo, J. J. D. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proc. Natl Acad. Sci. USA 102, 15357–15362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oelkers, E. H. & Gislason, S. R. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH=3 and 11. Geochim. Cosmochim. Acta 65, 3671–3681 (2001).

    Article  CAS  Google Scholar 

  121. Marini, L. Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling (Elsevier, 2006).

  122. Casey, W. H. On the relative dissolution rates of some oxide and orthosilicate minerals. J. Colloid Interface Sci. 146, 586–589 (1991).

    Article  CAS  Google Scholar 

  123. Casey, W. H. & Sposito, G. On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 56, 3825–3830 (1992).

    Article  CAS  Google Scholar 

  124. Sun, K. H. & Huggins, M. L. Energy additivity in oxygen-containing crystals and glasses. J. Phys. Colloid Chem. 51, 438–443 (1947).

    Article  CAS  PubMed  Google Scholar 

  125. Westrich, H. R., Cygan, R. T., Casey, W. H., Zemitis, C. & Arnold, G. W. The dissolution kinetics of mixed-cation orthosilicate minerals. Am. J. Sci. 293, 869–893 (1993).

    Article  CAS  Google Scholar 

  126. Velbel, M. A. Bond strength and the relative weathering rates of simple orthosilicates. Am. J. Sci. 299, 679–696 (1999).

    Article  CAS  Google Scholar 

  127. Casey, W. H. & Westrich, H. R. Control of dissolution rates of orthosilicate minerals by divalent metal–oxygen bonds. Nature 355, 157–159 (1992). This study provides a key insight into the importance of water exchange kinetics for controlling interfacial reactions, including elucidating how isomorphic mineral dissolution rates are controlled by their disparate compositions.

    Article  CAS  Google Scholar 

  128. Pokrovsky, O. S. & Schott, J. Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ. Sci. Technol. 36, 426–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Crundwell, F. K. The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group. Hydrometallurgy 150, 68–82 (2014).

    Article  CAS  Google Scholar 

  130. Plummer, L. N. & Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 46, 1011–1040 (1982).

    Article  CAS  Google Scholar 

  131. Raiteri, P., Demichelis, R. & Gale, J. D. Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation. J. Phys. Chem. C 119, 24447–24458 (2015).

    Article  CAS  Google Scholar 

  132. Raiteri, P. & Gale, J. D. Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 17623–17634 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Kashchiev, D. Nucleation (Butterworth-Heinemann, 2000).

  134. Yoreo, J. J. D. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  PubMed  CAS  Google Scholar 

  135. Ewing, G. E. Thin film water. J. Phys. Chem. B 108, 15953–15961 (2004).

    Article  CAS  Google Scholar 

  136. Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    Article  CAS  Google Scholar 

  137. Miller, Q. R. S. et al. Emerging investigator series: ion diffusivities in nanoconfined interfacial water films contribute to mineral carbonation thresholds. Environ. Sci. Nano 7, 1068–1081 (2020). This is the first study of carbonation activation energy as a function of water film thickness, in conjunction with molecular simulation, and revealed that ion diffusion controls carbonation reactivity thresholds.

    Article  CAS  Google Scholar 

  138. Masoumi, S., Zare, S., Valipour, H. & Abdolhosseini Qomi, M. J. Effective interactions between calcium-silicate-hydrate nanolayers. J. Phys. Chem. C 123, 4755–4766 (2019).

    Article  CAS  Google Scholar 

  139. Teschke, O., Ceotto, G. & de Souza, E. F. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy. Phys. Rev. E 64, 011605 (2001).

    Article  CAS  Google Scholar 

  140. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018). Validated predictions of significant dielectric constant decrease for interfacial water relative to bulk value.

    Article  CAS  PubMed  Google Scholar 

  141. Carrier, B. Influence of water on the short-term and long-term mechanical properties of swelling clays: experiments on self-supporting films and molecular simulations (Université Paris-Est, 2013).

  142. Senapati, S. & Chandra, A. Dielectric constant of water confined in a nanocavity. J. Phys. Chem. B 105, 5106–5109 (2001).

    Article  CAS  Google Scholar 

  143. Musat, R. et al. Finite size effects on hydrogen bonds in confined water. Angew. Chem. Int. Ed. 47, 8033–8035 (2008).

    Article  CAS  Google Scholar 

  144. Le Caër, S. et al. Time-resolved studies of water dynamics and proton transfer at the alumina−air interface. J. Am. Chem. Soc. 129, 11720–11729 (2007).

    Article  PubMed  CAS  Google Scholar 

  145. Caër, S. L. et al. A trapped water network in nanoporous material: the role of interfaces. Phys. Chem. Chem. Phys. 13, 17658–17666 (2011).

    Article  PubMed  CAS  Google Scholar 

  146. Bonnaud, P. A., Coasne, B. & Pellenq, R. J.-M. Molecular simulation of water confined in nanoporous silica. J. Phys. Condens. Matter 22, 284110 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Greathouse, J. A., Cygan, R. T., Fredrich, J. T. & Jerauld, G. R. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. J. Phys. Chem. C 120, 1640–1649 (2016).

    Article  CAS  Google Scholar 

  148. Tokunaga, T. K. et al. Ion diffusion within water films in unsaturated porous media. Environ. Sci. Technol. 51, 4338–4346 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Argyris, D., Ho, T., Cole, D. R. & Striolo, A. Molecular dynamics studies of interfacial water at the alumina surface. J. Phys. Chem. C 115, 2038–2046 (2011).

    Article  CAS  Google Scholar 

  150. Bourg, I. C. & Steefel, C. I. Molecular dynamics simulations of water structure and diffusion in silica nanopores. J. Phys. Chem. C 116, 11556–11564 (2012).

    Article  CAS  Google Scholar 

  151. Qomi, M. J. A., Bauchy, M., Ulm, F.-J. & Pellenq, R. J.-M. Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. J. Chem. Phys. 140, 054515 (2014).

    Article  PubMed  CAS  Google Scholar 

  152. Lee, M.-S., Peter McGrail, B., Rousseau, R. & Glezakou, V.-A. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations. Sci. Rep. 5, 14857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Regnault, O., Lagneau, V. & Schneider, H. Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem. Geol. 265, 113–121 (2009).

    Article  CAS  Google Scholar 

  154. Schaef, H. T., Windisch, C. F., McGrail, B. P., Martin, P. F. & Rosso, K. M. Brucite [Mg(OH2)] carbonation in wet supercritical CO2: an in situ high pressure X-ray diffraction study. Geochim. Cosmochim. Acta 75, 7458–7471 (2011).

    Article  CAS  Google Scholar 

  155. Miller, Q. R. S. et al. Water structure controls carbonic acid formation in adsorbed water films. J. Phys. Chem. Lett. 9, 4988–4994 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Baltrusaitis, J., Schuttlefield, J., Zeitler, E. & Grassian, V. H. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170, 471–481 (2011).

    Article  CAS  Google Scholar 

  157. Baltrusaitis, J. & Grassian, V. H. Carbonic acid formation from reaction of carbon dioxide and water coordinated to Al(OH)3: a quantum chemical study. J. Phys. Chem. A 114, 2350–2356 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Galib, M. & Hanna, G. Molecular dynamics simulations predict an accelerated dissociation of H2CO3 at the air–water interface. Phys. Chem. Chem. Phys. 16, 25573–25582 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Yan, H. et al. Termination and hydration of forsteritic olivine (010) surface. Geochim. Cosmochim. Acta 145, 268–280 (2014).

    Article  CAS  Google Scholar 

  160. Liu, T. et al. Vibrational behavior of water adsorbed on forsterite (Mg2SiO4) surfaces. ACS Earth Space Chem. 4, 1050–1063 (2020).

    Article  CAS  Google Scholar 

  161. Funk, A. & Trettin, H. F. R. DFT study on the effect of water on the carbonation of portlandite. Ind. Eng. Chem. Res. 52, 2168–2173 (2013).

    Article  CAS  Google Scholar 

  162. Kardar, M. Statistical Physics of Particles (Cambridge Univ. Press, 2007).

  163. Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996).

    Article  CAS  Google Scholar 

  164. Marx, D. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7, 1848–1870 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, M. et al. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 10, 413–419 (2018).

    Article  PubMed  CAS  Google Scholar 

  166. Cui, Q. & Karplus, M. Is a “proton wire” concerted or stepwise? A model study of proton transfer in carbonic anhydrase. J. Phys. Chem. B 107, 1071–1078 (2003).

    Article  CAS  Google Scholar 

  167. König, P. H. et al. Toward theoretical analyis of long-range proton transfer kinetics in biomolecular pumps. J. Phys. Chem. A 110, 548–563 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zare, S. & Qomi, M. J. A. Reactive force fields for aqueous and interfacial magnesium carbonate formation. Phys. Chem. Chem. Phys. 23, 23106–23123 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Busca, G. & Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 7, 89–126 (1982).

    Article  CAS  Google Scholar 

  170. Cornu, D., Guesmi, H., Krafft, J.-M. & Lauron-Pernot, H. Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches. J. Phys. Chem. C 116, 6645–6654 (2012).

    Article  CAS  Google Scholar 

  171. Fukuda, Y. & Tanabe, K. Infrared study of carbon dioxide adsorbed on magnesium and calcium oxides. Bull. Chem. Soc. Jpn 46, 1616–1619 (1973).

    Article  CAS  Google Scholar 

  172. Stark, J. V., Park, D. G., Lagadic, I. & Klabunde, K. J. Nanoscale metal oxide particles/clusters as chemical reagents. unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem. Mater. 8, 1904–1912 (1996).

    Article  CAS  Google Scholar 

  173. Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T. & Yoshida, S. Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys. Chem. Chem. Phys. 3, 1108–1113 (2001).

    Article  CAS  Google Scholar 

  174. Yanagisawa, Y., Takaoka, K., Yamabe, S. & Ito, T. Interaction of CO2 with magnesium oxide surfaces: a TPD, FTIR, and cluster-model calculation study. J. Phys. Chem. 99, 3704–3710 (1995).

    Article  CAS  Google Scholar 

  175. Rosso, J. J. & Rimstidt, J. D. A high resolution study of forsterite dissolution rates. Geochim. Cosmochim. Acta 64, 797–811 (2000).

    Article  CAS  Google Scholar 

  176. Van Herk, J., Pietersen, H. S. & Schuiling, R. D. Neutralization of industrial waste acids with olivine — the dissolution of forsteritic olivine at 40–70°C. Chem. Geol. 76, 341–352 (1989).

    Article  Google Scholar 

  177. Miller, Q. R. S., Kaszuba, J. P., Schaef, H. T., Bowden, M. E. & McGrail, B. P. Impacts of organic ligands on forsterite reactivity in supercritical CO2 fluids. Environ. Sci. Technol. 49, 4724–4734 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Kerisit, S. N., Mergelsberg, S. T., Thompson, C. J., White, S. K. & Loring, J. S. Thin water films enable low-temperature magnesite growth under conditions relevant to geologic carbon sequestration. Environ. Sci. Technol. 55, 12539–12548 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Qafoku, O. et al. Fayalite dissolution and siderite formation in water-saturated supercritical CO2. Chem. Geol. 332–333, 124–135 (2012).

    Article  CAS  Google Scholar 

  180. Tao, Y., Zare, S., Wang, F. & Qomi, M. J. A. Atomistic thermodynamics and kinetics of dicalcium silicate dissolution. Cem. Concr. Res. 157, 106833 (2022).

    Article  CAS  Google Scholar 

  181. Pichler, C., Saxer, A. & Lackner, R. Differential-scheme based dissolution/diffusion model for calcium leaching in cement-based materials accounting for mix design and binder composition. Cem. Concr. Res. 42, 686–699 (2012).

    Article  CAS  Google Scholar 

  182. Saldi, G. D., Jordan, G., Schott, J. & Oelkers, E. H. Magnesite growth rates as a function of temperature and saturation state. Geochim. Cosmochim. Acta 73, 5646–5657 (2009).

    Article  CAS  Google Scholar 

  183. Saldi, G. D., Schott, J., Pokrovsky, O. S., Gautier, Q. & Oelkers, E. H. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200°C as a function of pH, aqueous solution composition and chemical affinity. Geochim. Cosmochim. Acta 83, 93–109 (2012).

    Article  CAS  Google Scholar 

  184. Lorenzo, F. D., Rodríguez-Galán, R. M. & Prieto, M. Kinetics of the solvent-mediated transformation of hydromagnesite into magnesite at different temperatures. Mineral. Mag. 78, 1363–1372 (2014).

    Article  Google Scholar 

  185. Gautier, Q., Bénézeth, P. & Schott, J. Magnesite growth inhibition by organic ligands: an experimental study at 100, 120 and 146°C. Geochim. Cosmochim. Acta 181, 101–125 (2016).

    Article  CAS  Google Scholar 

  186. Sendula, E. et al. Synthetic fluid inclusions XXIV. In situ monitoring of the carbonation of olivine under conditions relevant to carbon capture and storage using synthetic fluid inclusion micro-reactors: determination of reaction rates. Front. Clim. 3, 134 (2021).

    Article  Google Scholar 

  187. Zhang, P., Anderson, H. L., Kelly, J. W., Krumhansl, J. L. & Papenguth, H. W. Kinetics and Mechanisms of Formation of Magnesite from Hydromagnesite in Brine (Sandia National Laboratories, 2000).

  188. Inskeep, W. P. & Bloom, P. R. An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochim. Cosmochim. Acta 49, 2165–2180 (1985).

    Article  CAS  Google Scholar 

  189. Cassford, G. E., House, W. A. & Pethybridge, A. D. Crystallisation kinetics of calcite from calcium bicarbonate solutions between 278.15 and 303.15K. J. Chem. Soc. Faraday Trans. 1 79, 1617–1632 (1983).

    Article  CAS  Google Scholar 

  190. Nancollas, G. H. & Reddy, M. M. The crystallization of calcium carbonate. II. Calcite growth mechanism. J. Colloid Interface Sci. 37, 824–830 (1971).

    Article  CAS  Google Scholar 

  191. Gutjahr, A., Dabringhaus, H. & Lacmann, R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite I. Growth and dissolution rates in water. J. Cryst. Growth 158, 296–309 (1996).

    Article  CAS  Google Scholar 

  192. Takasaki, S., Parsiegla, K. I. & Katz, J. L. Calcite growth and the inhibiting effect of iron(III). J. Cryst. Growth 143, 261–268 (1994).

    Article  CAS  Google Scholar 

  193. Dromgoole, E. L. & Walter, L. M. Inhibition of calcite growth rates by Mn2+ in CaCl2 solutions at 10, 25, and 50°C. Geochim. Cosmochim. Acta 54, 2991–3000 (1990).

    Article  CAS  Google Scholar 

  194. Wiechers, H. N. S., Sturrock, P. & Marais, G. V. R. Calcium carbonate crystallization kinetics. Water Res. 9, 835–845 (1975).

    Article  CAS  Google Scholar 

  195. Kazmierczak, T. F., Tomson, M. B. & Nancollas, G. H. Crystal growth of calcium carbonate: a controlled composition kinetic study. J. Phys. Chem. 86, 103–107 (1982).

    Article  CAS  Google Scholar 

  196. Nagy, K. L. The solubility of calcite in NaC1 and Na-Ca-C1 brines. Texas A&M University Libraries https://oaktrust.library.tamu.edu/handle/1969.1/DISSERTATIONS-771520 (1988).

  197. Lippmann, F. Sedimentary Carbonate Minerals (Springer-Verlag, 1973).

  198. Felmy, A. R. et al. Enhancing magnesite formation at low temperature and high CO2 pressure: the impact of seed crystals and minor components. Chem. Geol. 395, 119–125 (2015).

    Article  CAS  Google Scholar 

  199. Vandeginste, V., Snell, O., Hall, M. R., Steer, E. & Vandeginste, A. Acceleration of dolomitization by zinc in saline waters. Nat. Commun. 10, 1851 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Hellmann, R. et al. Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion. Nat. Mater. 14, 307–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Hellmann, R. et al. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 294–295, 203–216 (2012).

    Article  CAS  Google Scholar 

  202. Min, Y., Li, Q., Voltolini, M., Kneafsey, T. & Jun, Y.-S. Wollastonite carbonation in water-bearing supercritical CO2: effects of particle size. Environ. Sci. Technol. 51, 13044–13053 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Min, Y. & Jun, Y.-S. Wollastonite carbonation in water-bearing supercritical CO2: effects of water saturation conditions, temperature, and pressure. Chem. Geol. 483, 239–246 (2018).

    Article  CAS  Google Scholar 

  204. Boily, J.-F. et al. Thin water films at multifaceted hematite particle surfaces. Langmuir 31, 13127–13137 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Yalcin, S. E., Legg, B. A., Yeşilbaş, M., Malvankar, N. S. & Boily, J.-F. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. Sci. Adv. 6, aaz9708 (2020). These nanospectroscopy observations of anisotropic water film development on mineral surface highlighted the controlling roles that defect sites may have, especially in a dynamically reactive interfacial environment.

    Article  CAS  Google Scholar 

  206. Yeşilbaş, M. & Boily, J.-F. Particle size controls on water adsorption and condensation regimes at mineral surfaces. Sci. Rep. 6, 32136 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Cavanaugh, J., L. Whittaker, M. & Joester, D. Crystallization kinetics of amorphous calcium carbonate in confinement. Chem. Sci. 10, 5039–5043 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Darkins, R., Côté, A. S., Freeman, C. L. & Duffy, D. M. Crystallisation rates of calcite from an amorphous precursor in confinement. J. Cryst. Growth 367, 110–114 (2013).

    Article  CAS  Google Scholar 

  209. Ihli, J. et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5, 3169 (2014).

    Article  PubMed  CAS  Google Scholar 

  210. Stephens, C. J., Ladden, S. F., Meldrum, F. C. & Christenson, H. K. Amorphous calcium carbonate is stabilized in confinement. Adv. Funct. Mater. 20, 2108–2115 (2010).

    Article  CAS  Google Scholar 

  211. Wang, Y.-W., Christenson, H. K. & Meldrum, F. C. Confinement increases the lifetimes of hydroxyapatite precursors. Chem. Mater. 26, 5830–5838 (2014).

    Article  CAS  Google Scholar 

  212. Anduix-Canto, C. et al. Effect of nanoscale confinement on the crystallization of potassium ferrocyanide. Cryst. Growth Des. 16, 5403–5411 (2016).

    Article  CAS  Google Scholar 

  213. Sinnwell, M. A. et al. Molecular intermediate in the directed formation of a zeolitic metal–organic framework. J. Am. Chem. Soc. 142, 17598–17606 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Zhang, X. et al. In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2. Nat. Mater. 21, 345–351 (2022). This in situ atomic force microscopy study visualized carbonation in wet scCO2 for the first time and monitored the precipitation and transformation of amorphous magnesium carbonate.

    Article  CAS  PubMed  Google Scholar 

  215. Fenter, P. & Sturchio, N. C. Mineral–water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 77, 171–258 (2004). This paper provides a foundational evaluation of mineral–water interface chemistry, challenges and frontiers.

    Article  CAS  Google Scholar 

  216. Awad, A., Koster van Groos, A. F. & Guggenheim, S. Forsteritic olivine: effect of crystallographic direction on dissolution kinetics. Geochim. Cosmochim. Acta 64, 1765–1772 (2000).

    Article  CAS  Google Scholar 

  217. Bouissonnié, A., Daval, D., Guyot, F. & Ackerer, P. The dissolution anisotropy of pyroxenes: experimental validation of a stochastic dissolution model based on enstatite dissolution. J. Phys. Chem. C 124, 3122–3140 (2020).

    Article  CAS  Google Scholar 

  218. Daval, D. et al. Dynamics of altered surface layer formation on dissolving silicates. Geochim. Cosmochim. Acta 209, 51–69 (2017).

    Article  CAS  Google Scholar 

  219. Peuble, S. et al. Carbonate mineralization in percolated olivine aggregates: linking effects of crystallographic orientation and fluid flow. Am. Mineral. 100, 474–482 (2015).

    Article  Google Scholar 

  220. Pollet-Villard, M. et al. Does crystallographic anisotropy prevent the conventional treatment of aqueous mineral reactivity? A case study based on K-feldspar dissolution kinetics. Geochim. Cosmochim. Acta 190, 294–308 (2016).

    Article  CAS  Google Scholar 

  221. Kerisit, S. N. & De Yoreo, J. J. Effect of hydrophilicity and interfacial water structure on particle attachment. J. Phys. Chem. C 124, 5480–5488 (2020).

    Article  CAS  Google Scholar 

  222. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

    Article  CAS  Google Scholar 

  223. Zhang, X. et al. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434–437 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Wood, C. E., Qafoku, O., Loring, J. S. & Chaka, A. M. Role of Fe(II) content in olivine carbonation in wet supercritical CO2. Environ. Sci. Technol. Lett. 6, 592–599 (2019).

    Article  CAS  Google Scholar 

  225. Miller, Q. R. S. et al. Experimental study of organic ligand transport in supercritical CO2 fluids and impacts to silicate reactivity. Energy Procedia 63, 3225–3233 (2014).

    Article  CAS  Google Scholar 

  226. Lamadrid, H. M. et al. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 8, 16107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Le, T., Striolo, A., Turner, C. H. & Cole, D. R. Confinement effects on carbon dioxide methanation: a novel mechanism for abiotic methane formation. Sci. Rep. 7, 9021 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).

    Article  PubMed  CAS  Google Scholar 

  229. Tutolo, B., Mildner, D. F., Gagnon, C. V., Saar, M. O. & Seyfried, J. Nanoscale constraints on porosity generation and fluid flow during serpentinization. Geology 44, 103–106 (2016).

    Article  CAS  Google Scholar 

  230. Hövelmann, J., Austrheim, H. & Jamtveit, B. Microstructure and porosity evolution during experimental carbonation of a natural peridotite. Chem. Geol. 334, 254–265 (2012).

    Article  CAS  Google Scholar 

  231. Jarvis, K. et al. Reaction mechanisms for enhancing mineral sequestration of CO2. Environ. Sci. Technol. 43, 6314–6319 (2009).

    Article  CAS  PubMed  Google Scholar 

  232. Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).

    Article  Google Scholar 

  233. Rudge, J. F., Kelemen, P. B. & Spiegelman, M. A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite. Earth Planet. Sci. Lett. 291, 215–227 (2010).

    Article  CAS  Google Scholar 

  234. Zhu, W. et al. Experimental evidence of reaction-induced fracturing during olivine carbonation. Geophys. Res. Lett. 43, 9535–9543 (2016).

    Article  CAS  Google Scholar 

  235. Laubach, S. E. et al. The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Rev. Geophys. 57, 1065–1111 (2019).

    Article  Google Scholar 

  236. Nara, Y. et al. Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. Int. J. Solids Struct. 49, 2471–2481 (2012).

    Article  Google Scholar 

  237. Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A. & Rubinstein, J. L. High-rate injection is associated with the increase in US mid-continent seismicity. Science 348, 1336–1340 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Juncu, D. et al. Injection-induced surface deformation and seismicity at the Hellisheidi geothermal field, Iceland. J. Volcanol. Geotherm. Res. https://doi.org/10.1016/j.jvolgeores.2018.03.019 (2018).

    Article  Google Scholar 

  239. Barlet-Gouédard, V., Rimmelé, G., Porcherie, O., Quisel, N. & Desroches, J. A solution against well cement degradation under CO2 geological storage environment. Int. J. Greenh. Gas Control 3, 206–216 (2009).

    Article  CAS  Google Scholar 

  240. Barlet-Gouédard, V., Rimmelé, G., Goffé, B. & Porcherie, O. Well technologies for CO2 geological storage: CO2-resistant cement. Oil Gas. Sci. Technol. 62, 325–334 (2007).

    Article  CAS  Google Scholar 

  241. Hua, Y., Barker, R. & Neville, A. Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2. J. Supercrit. Fluids 97, 224–237 (2015).

    Article  CAS  Google Scholar 

  242. Kutchko, B. G., Strazisar, B. R., Dzombak, D. A., Lowry, G. V. & Thaulow, N. Degradation of well cement by CO2 under geologic sequestration conditions. Environ. Sci. Technol. 41, 4787–4792 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Rimmelé, G., Barlet-Gouédard, V., Porcherie, O., Goffé, B. & Brunet, F. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids. Cem. Concr. Res. 38, 1038–1048 (2008).

    Article  CAS  Google Scholar 

  244. Santos, R. M. et al. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int. J. Greenh. Gas Control 17, 32–45 (2013).

    Article  CAS  Google Scholar 

  245. US Department of Energy. Critical Minerals and Materials: U.S. Department of Energy’s Strategy to Support Domestic Critical Mineral and Material Supply Chains (FY 2021-FY 2031) (US Department of Energy, 2021).

  246. Wicks, D. & King, J. ARPA-E Workshop on CO2 mineralization for energy relevant mineral extraction. ARPA https://arpa-e.energy.gov/sites/default/files/TUES%201-10%20pm%20Workshop%20Kick%20off%20-%207_13_2021%20LAST%20of%20the%20morning%20-%20part%201.pdf (2021).

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division through its Geosciences programme at Pacific Northwest National Laboratory (PNNL) and at the University of California Irvine through an Early Career award to M.J.A.Q. (DE-SC0022301). H.T.S. acknowledges support from D. Damiani (DOE HQ) and the Carbon Utilization and Storage Partnership (CUSP). J.P.K acknowledges support from the John and Jane Wold Centennial Chair in Energy and from a Nielson Energy Fellowship. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Abdolhosseini Qomi or Q. R. S. Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks G. Gadikota and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Flood basalts

Voluminous lava flow outpourings that cover large swathes of continental or oceanic crust.

Mafic rock

A dark coloured ferromagnesian rock, such as basalt.

Ultramafic rock

Rock with >18% MgO and low silica content, often <45% SiO2 and predominantly composed of olivine ((Mg, Fe)2SiO4) and pyroxene ((Mg, Fe)SiO3) minerals.

Supercritical CO2

(scCO2). Carbon dioxide phase with simultaneous gas-like and liquid-like properties at conditions greater than 31 °C and 73.8 bar.

Forsterite

(Mg2SiO4). An endmember composition of olivine ((Mg, Fe)2SiO4).

Serpentinization

A series of hydration reactions that occur when mafic or ultramafic rocks are exposed to circulating aqueous fluids at <400 °C.

Long-range proton transfer (proton wire)

Sequential proton transfer between a proton donor (acid) and a proton acceptor (base) mediated by water and/or other ionizable molecules.

Charge accumulation model

A model that predicts the surface charge created via bond termination, adsorption of ionic species from the solution and the dissolution of constituent ions into the solvent.

Electrochemical impedance spectroscopy

An electrochemical technique to monitor charge carrier electromigration and diffusive polarization associated with mass transport within the electrical double layer, and is useful for probing mineral–fluid interfaces at the laboratory or field scale.

Reactivity threshold

The tipping point in relative humidity and subsequent water film thickness separating regimes of rapid and persistent reactivity (for example, carbonation of substrate silicate minerals) from those characterized by negligible and/or highly impeded discontinuous reactivity.

Thermogravimetric mass spectrometry

A technique to measure sample weight change as a function of temperature while relating evolved gases to weight loss steps, and is useful for determining, identifying and quantifying carbonate mineral assemblages.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolhosseini Qomi, M.J., Miller, Q.R.S., Zare, S. et al. Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nat Rev Chem 6, 598–613 (2022). https://doi.org/10.1038/s41570-022-00418-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00418-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing