Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Harnessing big data to characterize immune-related adverse events

Abstract

Immune-checkpoint inhibitors (ICIs) have transformed patient care in oncology but are associated with a unique spectrum of organ-specific inflammatory toxicities known as immune-related adverse events (irAEs). Given the expanding use of ICIs, an increasing number of patients with cancer experience irAEs, including severe irAEs. Proper diagnosis and management of irAEs are important to optimize the quality of life and long-term outcomes of patients receiving ICIs; however, owing to the substantial heterogeneity within irAEs, and despite multicentre initiatives, performing clinical studies of these toxicities with a sufficient cohort size is challenging. Pioneering studies from the past few years have demonstrated that aggregate clinical data, real-world data (such as data on pharmacovigilance or from electronic health records) and multi-omics data are alternative tools well suited to investigating the underlying mechanisms and clinical presentations of irAEs. In this Perspective, we summarize the advantages and shortcomings of different sources of ‘big data’ for the study of irAEs and highlight progress made using such data to identify biomarkers of irAE risk, evaluate associations between irAEs and therapeutic efficacy, and characterize the effects of demographic and anthropometric factors on irAE risk. Harnessing big data will accelerate research on irAEs and provide key insights that will improve the clinical management of patients receiving ICIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exponential growth of big data from representative data sources.
Fig. 2: Identification of irAE biomarkers.
Fig. 3: Association between irAEs and ICI efficacy.
Fig. 4: Associations between irAEs and demographic factors.

Similar content being viewed by others

References

  1. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    CAS  PubMed  Google Scholar 

  5. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).

    PubMed  Google Scholar 

  6. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Salem, J.-E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, D. B., Chandra, S. & Sosman, J. A. Immune checkpoint inhibitor toxicity in 2018. JAMA 320, 1702–1703 (2018).

    PubMed  Google Scholar 

  9. Johnson, D. B. et al. Immune checkpoint inhibitor toxicities: systems-based approaches to improve patient care and research. Lancet Oncol. 21, e398–e404 (2020).

    CAS  PubMed  Google Scholar 

  10. Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).

    PubMed  Google Scholar 

  11. Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    CAS  PubMed  Google Scholar 

  12. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    CAS  PubMed  Google Scholar 

  13. Moslehi, J., Lichtman, A. H., Sharpe, A. H., Galluzzi, L. & Kitsis, R. N. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J. Clin. Invest. 131, e145186 (2021).

    CAS  PubMed Central  Google Scholar 

  14. June, C. H., Warshauer, J. T. & Bluestone, J. A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 23, 540–547 (2017).

    CAS  PubMed  Google Scholar 

  15. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    CAS  PubMed  Google Scholar 

  16. Dougan, M., Luoma, A. M., Dougan, S. K. & Wucherpfennig, K. W. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 184, 1575–1588 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson, D. B. et al. Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J. Immunother. Cancer 7, 134 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Moslehi, J. J., Salem, J.-E., Sosman, J. A., Lebrun-Vignes, B. & Johnson, D. B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Brahmer, J. R. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 9, e002435 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Guidon, A. C. et al. Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. J. Immunother. Cancer 9, e002890 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Reynolds, K. L. et al. Immune-related adverse events associated with immune checkpoint inhibitors: a call to action for collecting and sharing clinical trial and real-world data. J. Immunother. Cancer 9, e002896 (2021).

    PubMed  PubMed Central  Google Scholar 

  22. Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Bonaca, M. P. et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 140, 80–91 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Ghisoni, E. et al. Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: an overlooked aspect in immunotherapy. Eur. J. Cancer 149, 153–164 (2021).

    CAS  PubMed  Google Scholar 

  26. Parakh, S., Cebon, J. & Klein, O. Delayed autoimmune toxicity occurring several months after cessation of anti-PD-1 therapy. Oncologist 23, 849–851 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    CAS  PubMed  Google Scholar 

  28. Valpione, S. et al. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J. Transl. Med. 16, 94 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 5, 1008–1019 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Bomze, D., Hasan Ali, O., Bate, A. & Flatz, L. Association between immune-related adverse events during anti-PD-1 therapy and tumor mutational burden. JAMA Oncol. 5, 1633–1635 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    PubMed  Google Scholar 

  32. Booth, C. M., Karim, S. & Mackillop, W. J. Real-world data: towards achieving the achievable in cancer care. Nat. Rev. Clin. Oncol. 16, 312–325 (2019).

    PubMed  Google Scholar 

  33. Fitzgerald, R. C. Big data is crucial to the early detection of cancer. Nat. Med. 26, 19–20 (2020).

    CAS  PubMed  Google Scholar 

  34. Jing, Y. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 11, 4946 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dolladille, C. et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol. 6, 865–871 (2020).

    PubMed  Google Scholar 

  36. Concato, J., Shah, N. & Horwitz, R. I. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N. Engl. J. Med. 342, 1887–1892 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Byar, D. P. et al. Randomized clinical trials. Perspectives on some recent ideas. N. Engl. J. Med. 295, 74–80 (1976).

    CAS  PubMed  Google Scholar 

  38. Brahmer, J. R. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 36, 1714–1768 (2018).

    CAS  PubMed  Google Scholar 

  39. Champiat, S. et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann. Oncol. 27, 559–574 (2016).

    CAS  PubMed  Google Scholar 

  40. Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 5, 95 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thompson, J. A. et al. Management of immunotherapy-related toxicities, version 1.2019. J. Natl Compr. Cancer Netw. 17, 255–289 (2019).

    CAS  Google Scholar 

  42. Siu, L. L. et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 5, 195–203 (2019).

    PubMed  Google Scholar 

  43. Finn, R. S. et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J. Clin. Oncol. 38, 193–202 (2020).

    CAS  PubMed  Google Scholar 

  44. Yu, J. X. et al. Trends in clinical development for PD-1/PD-L1 inhibitors. Nat. Rev. Drug Discov. 19, 163–164 (2020).

    CAS  Google Scholar 

  45. Debray, T. P. A. et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ 356, i6460 (2017).

    PubMed  Google Scholar 

  46. Baxi, S. et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ 360, k793 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Duan, J. et al. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: a systematic review and meta-analysis. JAMA Oncol. 6, 375–384 (2020).

    PubMed  Google Scholar 

  48. Groarke, J. D., Cheng, S. & Moslehi, J. Cancer-drug discovery and cardiovascular surveillance. N. Engl. J. Med. 369, 1779–1781 (2013).

    CAS  PubMed  Google Scholar 

  49. Frean, M., Gruber, J. & Sommers, B. D. Disentangling the ACA’s coverage effects — lessons for policymakers. N. Engl. J. Med. 375, 1605–1608 (2016).

    PubMed  Google Scholar 

  50. Schmidt, H., Caldwell, B., Mollet, A., Leimer, H.-G. & Szucs, T. An industry experience with data sharing. N. Engl. J. Med. 379, 2081–2082 (2018).

    PubMed  Google Scholar 

  51. Nabhan, C., Klink, A. & Prasad, V. Real-world evidence - what does it really mean? JAMA Oncol. 5, 781–783 (2019).

    PubMed  Google Scholar 

  52. Oshima, Y., Tanimoto, T., Yuji, K. & Tojo, A. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol. 4, 1112–1115 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Moey, M. Y. Y. et al. Increased reporting of fatal pneumonitis associated with immune checkpoint inhibitors: a WHO pharmacovigilance database analysis. Eur. Respir. J. 55, 2000038 (2020).

    PubMed  Google Scholar 

  54. Zhai, Y. et al. Endocrine toxicity of immune checkpoint inhibitors: a real-world study leveraging US Food and Drug Administration adverse events reporting system. J. Immunother. Cancer 7, 286 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Kalinich, M. et al. Prediction of severe immune-related adverse events requiring hospital admission in patients on immune checkpoint inhibitors: study of a population level insurance claims database from the USA. J. Immunother. Cancer 9, e001935 (2021).

    PubMed  PubMed Central  Google Scholar 

  56. Wongvibulsin, S. et al. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: a United States population-level analysis. J. Am. Acad. Dermatol. https://doi.org/10.1016/j.jaad.2021.03.094 (2021).

    Article  PubMed  Google Scholar 

  57. Wedam, S. et al. FDA approval summary: palbociclib for male patients with metastatic breast cancer. Clin. Cancer Res. 26, 1208–1212 (2020).

    CAS  PubMed  Google Scholar 

  58. Stewart, M. et al. An exploratory analysis of real-world end points for assessing outcomes among immunotherapy-treated patients with advanced non–small-cell lung cancer. JCO Clin. Cancer Inform. 3, 1–15 (2019).

    PubMed  Google Scholar 

  59. Verzoni, E. et al. Real-world efficacy and safety of nivolumab in previously-treated metastatic renal cell carcinoma, and association between immune-related adverse events and survival: the Italian expanded access program. J. Immunother. Cancer 7, 99 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Chambers, D. A. et al. The impact of big data research on practice, policy, and cancer care. Am. Soc. Clin. Oncol. Educ. B 39, e167–e175 (2019).

    Google Scholar 

  61. Big hopes for big data. Nat. Med. 26, 1 (2020).

    Google Scholar 

  62. Cancer Genome Atlas Research Network, et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    PubMed Central  Google Scholar 

  63. Bahcall, O. G. UK Biobank — a new era in genomic medicine. Nat. Rev. Genet. 19, 737 (2018).

    CAS  PubMed  Google Scholar 

  64. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets — update. Nucleic Acids Res. 41, D991–D995 (2013).

    CAS  PubMed  Google Scholar 

  65. Leinonen, R., Sugawara, H. & Shumway, M. The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2011).

    CAS  PubMed  Google Scholar 

  66. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    CAS  Google Scholar 

  67. Aguet, F. et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science 369, eaaz5900 (2020).

    PubMed  PubMed Central  Google Scholar 

  68. Orrù, V. et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat. Genet. 52, 1036–1045 (2020).

    PubMed  PubMed Central  Google Scholar 

  69. Frésard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 25, 489–494 (2009).

    CAS  PubMed  Google Scholar 

  71. Lynch, J. A. et al. Underutilization and disparities in access to EGFR testing among Medicare patients with lung cancer from 2010-2013. BMC Cancer 18, 306 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).

    CAS  PubMed  Google Scholar 

  73. Balogun, O. D. & Olopade, O. I. Addressing health disparities in cancer with genomics. Nat. Rev. Genet. 22, 621–622 (2021).

    CAS  PubMed  Google Scholar 

  74. Luo, J. et al. Immunotherapy-mediated thyroid dysfunction: genetic risk and impact on outcomes with PD-1 blockade in non–small cell lung cancer. Clin. Cancer Res. 27, 5131–5140 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Khan, Z. et al. Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade. Nat. Commun. 12, 3355 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ye, Y. et al. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11, 1779 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ye, Y. et al. Profiling of immune features to predict immunotherapy efficacy. Innovation 3, 100194 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol., https://doi.org/10.1038/s41587-021-01070-8 (2021).

    Article  PubMed  Google Scholar 

  79. Xu, C. et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363, k4226 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Smith, G. D., Egger, M. & Phillips, A. N. Meta-analysis: beyond the grand mean? BMJ 315, 1610–1614 (1997).

    Google Scholar 

  81. Zamami, Y. et al. Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 5, 1635–1637 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Auslander, N. et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 24, 1545–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, H. & Liang, H. A high-resolution map of human enhancer RNA loci characterizes super-enhancer activities in cancer. Cancer Cell 38, 701–715.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Goecks, J., Jalili, V., Heiser, L. M. & Gray, J. W. How machine learning will transform biomedicine. Cell 181, 92–101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Johannet, P. et al. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma. Clin. Cancer Res. 27, 131–140 (2021).

    CAS  PubMed  Google Scholar 

  91. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jia, X. H. et al. The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. J. Exp. Clin. Cancer Res. 39, 284 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ali, O. H. et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 107, 8–14 (2019).

    Google Scholar 

  94. Shahabi, V. et al. Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. J. Transl. Med. 11, 75 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Friedlander, P. et al. A whole-blood RNA transcript-based gene signature is associated with the development of CTLA-4 blockade-related diarrhea in patients with advanced melanoma treated with the checkpoint inhibitor tremelimumab. J. Immunother. Cancer 6, 90 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Khan, S. et al. Immune dysregulation in cancer patients developing immune-related adverse events. Br. J. Cancer 120, 63–68 (2019).

    CAS  PubMed  Google Scholar 

  97. Pistillo, M. P. et al. Soluble CTLA-4 as a favorable predictive biomarker in metastatic melanoma patients treated with ipilimumab: an Italian melanoma intergroup study. Cancer Immunol. Immunother. 68, 97–107 (2019).

    CAS  PubMed  Google Scholar 

  98. Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Lim, S. Y. et al. Circulating cytokines predict immune-related toxicity in melanoma patients receiving anti-PD-1-based immunotherapy. Clin. Cancer Res. 25, 1557–1563 (2019).

    CAS  PubMed  Google Scholar 

  100. Abolhassani, A. R., Schuler, G., Kirchberger, M. C. & Heinzerling, L. C-reactive protein as an early marker of immune-related adverse events. J. Cancer Res. Clin. Oncol. 145, 2625–2631 (2019).

    CAS  PubMed  Google Scholar 

  101. Kurimoto, C. et al. Predictive and sensitive biomarkers for thyroid dysfunctions during treatment with immune-checkpoint inhibitors. Cancer Sci. 111, 1468–1477 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Toi, Y. et al. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol. 5, 376–383 (2019).

    PubMed  Google Scholar 

  103. Sakakida, T. et al. Safety and efficacy of PD-1/PD-L1 blockade in patients with preexisting antinuclear antibodies. Clin. Transl. Oncol. 22, 919–927 (2020).

    CAS  PubMed  Google Scholar 

  104. Ali, O. H. et al. BP180-specific IgG is associated with skin adverse events, therapy response, and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors. J. Am. Acad. Dermatol. 82, 854–861 (2020).

    Google Scholar 

  105. Tahir, S. A. et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc. Natl Acad. Sci. USA 116, 22246–22251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    PubMed  Google Scholar 

  107. Abdel-Wahab, N., Shah, M., Lopez-Olivo, M. A. & Suarez-Almazor, M. E. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann. Intern. Med. 168, 121–130 (2018).

    PubMed  Google Scholar 

  108. Leonardi, G. C. et al. Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J. Clin. Oncol. 36, 1905–1912 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. van der Kooij, M. K. et al. Safety and efficacy of checkpoint inhibition in patients with melanoma and preexisting autoimmune disease: a cohort study. Ann. Intern. Med. 174, 641–648 (2021).

    PubMed  Google Scholar 

  110. Brown, L. J. et al. Combination anti-PD1 and ipilimumab therapy in patients with advanced melanoma and pre-existing autoimmune disorders. J. Immunother. Cancer 9, e002121 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Diehl, A., Yarchoan, M., Hopkins, A., Jaffee, E. & Grossman, S. A. Relationships between lymphocyte counts and treatmentrelated toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors. Oncotarget 8, 114268–114280 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Nakamura, Y. et al. Correlation between blood cell count and outcome of melanoma patients treated with anti-PD-1 antibodies. Jpn. J. Clin. Oncol. 49, 431–437 (2019).

    PubMed  Google Scholar 

  113. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Fujisawa, Y. et al. Fluctuations in routine blood count might signal severe immune-related adverse events in melanoma patients treated with nivolumab. J. Dermatol. Sci. 88, 225–231 (2017).

    CAS  PubMed  Google Scholar 

  115. Egami, S. et al. Peripheral blood biomarkers predict immune-related adverse events in non-small cell lung cancer patients treated with pembrolizumab: a multicenter retrospective study. J. Cancer 12, 2105–2112 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).

    CAS  PubMed  Google Scholar 

  117. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Yarchoan, M. et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 4, e126908 (2019).

    PubMed Central  Google Scholar 

  120. Lee, J. S. & Ruppin, E. Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1. JAMA Oncol. 5, 1614–1618 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen, S.-Y., Yue, T., Lei, Q. & Guo, A.-Y. TCRdb: a comprehensive database for T-cell receptor sequences with powerful search function. Nucleic Acids Res. 49, D468–D474 (2021).

    CAS  PubMed  Google Scholar 

  122. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Consortium, T. G. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Google Scholar 

  124. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  125. Wang, L. B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39, 509–528.e20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS  PubMed  Google Scholar 

  127. Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256 (2021).

    PubMed  Google Scholar 

  128. Jing, Y. et al. Expression of chimeric antigen receptor therapy targets detected by single-cell sequencing of normal cells may contribute to off-tumor toxicity. Cancer Cell 39, 1558–1559 (2021).

    CAS  PubMed  Google Scholar 

  129. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mekki, A. et al. Detection of immune-related adverse events by medical imaging in patients treated with anti-programmed cell death 1. Eur. J. Cancer 96, 91–104 (2018).

    CAS  PubMed  Google Scholar 

  131. Alessandrino, F. et al. Frequency and imaging features of abdominal immune-related adverse events in metastatic lung cancer patients treated with PD-1 inhibitor. Abdom. Radiol. 44, 1917–1927 (2019).

    Google Scholar 

  132. Huang, A. et al. Radiographic features and prognosis of early- and late-onset non-small cell lung cancer immune checkpoint inhibitor-related pneumonitis. BMC Cancer 21, 634 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Colen, R. R. et al. Radiomics to predict immunotherapy-induced pneumonitis: proof of concept. Invest. New Drugs 36, 601–607 (2018).

    CAS  PubMed  Google Scholar 

  134. Calvert, M. J., O’Connor, D. J. & Basch, E. M. Harnessing the patient voice in real-world evidence: the essential role of patient-reported outcomes. Nat. Rev. Drug Discov. 18, 731–732 (2019).

    CAS  PubMed  Google Scholar 

  135. Fallowfield, L., Payne, H. & Jenkins, V. Patient-reported outcomes in metastatic castration-resistant prostate cancer. Nat. Rev. Clin. Oncol. 13, 643–650 (2016).

    PubMed  Google Scholar 

  136. Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 7, 306 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Teraoka, S. et al. Early immune-related adverse events and association with outcome in advanced non–small cell lung cancer patients treated with nivolumab: a prospective cohort study. J. Thorac. Oncol. 12, 1798–1805 (2017).

    PubMed  Google Scholar 

  138. Sato, K. et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer 115, 71–74 (2018).

    PubMed  Google Scholar 

  139. Toi, Y. et al. Association of immune-related adverse events with clinical benefit in patients with advanced non-small-cell lung cancer treated with nivolumab. Oncologist 23, 1358–1365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Haratani, K. et al. Association of immune-related adverse events with nivolumab efficacy in non-small cell lung cancer. JAMA Oncol. 4, 374–378 (2018).

    PubMed  Google Scholar 

  141. Maillet, D. et al. Association between immune-related adverse events and long-term survival outcomes in patients treated with immune checkpoint inhibitors. Eur. J. Cancer 132, 61–70 (2020).

    CAS  PubMed  Google Scholar 

  142. Chen, X. et al. Immune-related adverse events and their association with the effectiveness of PD-1/PD-L1 inhibitors in non-small cell lung cancer: a real-world study from China. Front. Oncol. 11, 607531 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Eggermont, A. M. M. et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 6, 519–527 (2020).

    PubMed  PubMed Central  Google Scholar 

  144. Ishihara, H. et al. Association between immune-related adverse events and prognosis in patients with metastatic renal cell carcinoma treated with nivolumab. Urol. Oncol. Semin. Orig. Investig. 37, 355.e21–355.e29 (2019).

    CAS  Google Scholar 

  145. Economopoulou, P. et al. Association of autoimmunity with survival in patients with recurrent/metastatic head and neck squamous cell carcinoma treated with nivolumab. Oral. Oncol. 111, 105013 (2020).

    CAS  PubMed  Google Scholar 

  146. Masuda, K. et al. Correlation between immune-related adverse events and prognosis in patients with gastric cancer treated with nivolumab. BMC Cancer 19, 974 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Hua, C. et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 152, 45–51 (2016).

    PubMed  Google Scholar 

  148. Quach, H. T. et al. Association of anti-programmed cell death 1 cutaneous toxic effects with outcomes in patients with advanced melanoma. JAMA Oncol. 5, 906–908 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Abu-Sbeih, H. et al. Immune checkpoint inhibitor-induced colitis as a predictor of survival in metastatic melanoma. Cancer Immunol. Immunother. 68, 553–561 (2019).

    CAS  PubMed  Google Scholar 

  150. Kim, H. I. et al. Development of thyroid dysfunction is associated with clinical response to PD-1 blockade treatment in patients with advanced non-small cell lung cancer. Oncoimmunology 7, e1375642 (2018).

    Google Scholar 

  151. Shimozaki, K. et al. Multiple immune-related adverse events and anti-tumor efficacy: real-world data on various solid tumors. Cancer Manag. Res. 12, 4585–4593 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    CAS  PubMed  Google Scholar 

  153. Maher, V. E. et al. Analysis of the association between adverse events and outcome in patients receiving a programmed death protein 1 or programmed death ligand 1 antibody. J. Clin. Oncol. 37, 2730–2737 (2019).

    CAS  PubMed  Google Scholar 

  154. Kelly, K. et al. Efficacy and immune-related adverse event associations in avelumab-treated patients. J. Immunother. Cancer 8, e001427 (2020).

    PubMed  PubMed Central  Google Scholar 

  155. Freeman-Keller, M. et al. Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin. Cancer Res. 22, 886–894 (2016).

    CAS  PubMed  Google Scholar 

  156. Teulings, H. E. et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J. Clin. Oncol. 33, 773–781 (2015).

    CAS  PubMed  Google Scholar 

  157. Zhou, X. et al. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? a systematic review and meta-analysis. BMC Med. 18, 87 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, D. et al. Immune-related adverse events predict the efficacy of immune checkpoint inhibitors in lung cancer patients: a meta-analysis. Front. Oncol. 11, 631949 (2021).

    PubMed  PubMed Central  Google Scholar 

  159. Fan, Y. et al. Association of immune related adverse events with efficacy of immune checkpoint inhibitors and overall survival in cancers: a systemic review and meta-analysis. Front. Oncol. 11, 633032 (2021).

    PubMed  PubMed Central  Google Scholar 

  160. Osipov, A. et al. Tumor mutational burden, toxicity, and response of immune checkpoint inhibitors targeting PD(L)1, CTLA-4, and combination: a meta-regression analysis. Clin. Cancer Res. 26, 4842–4851 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Singal, G. et al. Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA 321, 1391–1399 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen, A. Y., Wolchok, J. D. & Bass, A. R. TNF in the era of immune checkpoint inhibitors: friend or foe? Nat. Rev. Rheumatol. 17, 213–223 (2021).

    PubMed  PubMed Central  Google Scholar 

  163. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bai, X. et al. Early use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapy. Clin. Cancer Res. 27, 5993–6000 (2021).

    CAS  PubMed  Google Scholar 

  165. Dearden, H. et al. Hyperacute toxicity with combination ipilimumab and anti-PD1 immunotherapy. Eur. J. Cancer 153, 168–178 (2021).

    CAS  PubMed  Google Scholar 

  166. Kostine, M. et al. Rheumatic disorders associated with immune checkpoint inhibitors in patients with cancer - clinical aspects and relationship with tumour response: a single-centre prospective cohort study. Ann. Rheum. Dis. 77, 393–398 (2018).

    CAS  PubMed  Google Scholar 

  167. Shankar, B. et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer. JAMA Oncol. 6, 1952–1956 (2020).

    PubMed  Google Scholar 

  168. Pollack, M. H. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann. Oncol. 29, 250–255 (2018).

    CAS  PubMed  Google Scholar 

  169. Santini, F. C. et al. Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol. Res. 6, 1093–1099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Alaiwi, S. A. et al. Safety and efficacy of restarting immune checkpoint inhibitors after clinically significant immune-related adverse events in metastatic renal cell carcinoma. J. Immunother. Cancer 8, e000144 (2020).

    PubMed  PubMed Central  Google Scholar 

  171. Allouchery, M. et al. Safety of immune checkpoint inhibitor rechallenge after discontinuation for grade ≥2 immune-related adverse events in patients with cancer. J. Immunother. Cancer 8, e001622 (2020).

    PubMed  PubMed Central  Google Scholar 

  172. Li, M. et al. Outcomes after resumption of immune checkpoint inhibitor therapy after high-grade immune-mediated hepatitis. Cancer 126, 5088–5097 (2020).

    CAS  PubMed  Google Scholar 

  173. Mazzola, R. et al. Oligometastasis and local ablation in the era of systemic targeted and immunotherapy. Radiat. Oncol. 15, 92 (2020).

    PubMed  PubMed Central  Google Scholar 

  174. Borcoman, E. et al. Novel patterns of response under immunotherapy. Ann. Oncol. 30, 385–396 (2019).

    CAS  PubMed  Google Scholar 

  175. Bauml, J. M. et al. Pembrolizumab after completion of locally ablative therapy for oligometastatic non-small cell lung cancer: a phase 2 trial. JAMA Oncol. 5, 1283–1290 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  177. Elias, R., Hartshorn, K., Rahma, O., Lin, N. & Snyder-Cappione, J. E. Aging, immune senescence, and immunotherapy: a comprehensive review. Semin. Oncol. 45, 187–200 (2018).

    PubMed  Google Scholar 

  178. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS  PubMed  Google Scholar 

  179. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    CAS  PubMed  Google Scholar 

  180. Ksienski, D. et al. Association of age with differences in immune related adverse events and survival of patients with advanced nonsmall cell lung cancer receiving pembrolizumab or nivolumab. J. Geriatr. Oncol. 11, 807–813 (2020).

    PubMed  Google Scholar 

  181. Kondo, T. et al. Age-based efficacy and safety of nivolumab for recurrent or metastatic head and neck squamous cell carcinoma: a multicenter retrospective study. Asia. Pac. J. Clin. Oncol. 16, 340–347 (2020).

    PubMed  Google Scholar 

  182. Shah, K. P. et al. Demographic factors associated with toxicity in patients treated with anti-programmed cell death-1 therapy. Cancer Immunol. Res. 8, 851–855 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Duma, N. et al. Sex differences in tolerability to anti-programmed cell death protein 1 therapy in patients with metastatic melanoma and non-small cell lung cancer: are we all equal? Oncologist 24, e1148–e1155 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Bui, A.-T. N., Bougrine, A., Buchbinder, E. I., Giobbie-Hurder, A. & LeBoeuf, N. R. Female sex is associated with higher rates of dermatologic adverse events among patients with melanoma receiving immune checkpoint inhibitor therapy: a retrospective cohort study. J. Am. Acad. Dermatol. https://doi.org/10.1016/j.jaad.2021.06.885 (2021).

    Article  PubMed  Google Scholar 

  185. Muir, C. A. et al. Thyroid immune-related adverse events following immune checkpoint inhibitor treatment. J. Clin. Endocrinol. Metab. 106, e3704–e3713 (2021).

    PubMed  Google Scholar 

  186. Kartolo, A., Sattar, J., Sahai, V., Baetz, T. & Lakoff, J. M. Predictors of immunotherapy-induced immune-related adverse events. Curr. Oncol. 25, e403–e410 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Thompson, L. L. et al. Patterns of cutaneous and noncutaneous immune-related adverse events among patients with advanced cancer. JAMA Dermatol. 157, 577–582 (2021).

    PubMed  Google Scholar 

  188. Cortellini, A. et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer 7, 57 (2019).

    PubMed  PubMed Central  Google Scholar 

  189. Young, A. C. et al. Impact of body composition on outcomes from anti-PD1+/− anti-CTLA-4 treatment in melanoma. J. Immunother. Cancer 8, e000821 (2020).

    PubMed  PubMed Central  Google Scholar 

  190. Huang, X. et al. Age-associated changes in adverse events arising from anti-PD-(L)1 therapy. Front. Oncol. 11, 619385 (2021).

    PubMed  PubMed Central  Google Scholar 

  191. Baldini, C. et al. Impact of aging on immune-related adverse events generated by anti-programmed death (ligand)PD-(L)1 therapies. Eur. J. Cancer 129, 71–79 (2020).

    CAS  PubMed  Google Scholar 

  192. Cathcart-Rake, E. J. et al. A population-based study of immunotherapy-related toxicities in lung cancer. Clin. Lung Cancer 21, 421–427.e2 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Mikami, T. et al. Neuroimmunological adverse events associated with immune checkpoint inhibitor: a retrospective, pharmacovigilance study using FAERS database. J. Neurooncol. 152, 135–144 (2021).

    PubMed  Google Scholar 

  194. Bai, X. et al. Immune checkpoint inhibitor-associated pituitary adverse events: an observational, retrospective, disproportionality study. J. Endocrinol. Invest. 43, 1473–1483 (2020).

    CAS  PubMed  Google Scholar 

  195. Grouthier, V. et al. Immune checkpoint inhibitor-associated primary adrenal insufficiency: WHO VigiBase report analysis. Oncologist 25, 696–701 (2020).

    PubMed  PubMed Central  Google Scholar 

  196. Xu, H., Cao, D., He, A. & Ge, W. The prognostic role of obesity is independent of sex in cancer patients treated with immune checkpoint inhibitors: a pooled analysis of 4090 cancer patients. Int. Immunopharmacol. 74, 105745 (2019).

    CAS  PubMed  Google Scholar 

  197. Chen, H. et al. Pretreatment body mass index and clinical outcomes in cancer patients following immune checkpoint inhibitors: a systematic review and meta-analysis. Cancer Immunol. Immunother. 69, 2413–2424 (2020).

    CAS  PubMed  Google Scholar 

  198. Jing, Y. et al. Association between sex and immune-related adverse events during immune checkpoint inhibitor therapy. J. Natl Cancer Inst. 113, 1396–1404 (2021).

    PubMed  Google Scholar 

  199. Foersch, S. et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Ann. Oncol. 32, 1178–1187 (2021).

    CAS  PubMed  Google Scholar 

  200. Liu, Y. et al. A deep learning system for differential diagnosis of skin diseases. Nat. Med. 26, 900–908 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive funding support from the Cancer Prevention and Research Institute of Texas (grant RP190570 to L.H.) and National Institutes of Health (grants R01HL141466, R01HL155990 and R01HL156021 to J.J.M.). The authors thank L. Chastain (University of Texas MD Anderson Cancer Center) for editorial assistance. The authors regret that page limitations have prevented them from including all the relevant studies in this Perspective.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to Douglas B. Johnson, Javid J. Moslehi or Leng Han.

Ethics declarations

Competing interests

D.B.J. has been an advisory board member or consultant for Bristol Myers Squibb, Catalyst, Iovance, Jansen, Mallinckrodt, Merck, Mosaic ImmunoEngineering, Novartis, Oncosec, Pfizer, and Targovax and receives grant support from Bristol Myers Squibb and Incyte for work outside the scope of this article. J.J.M. has served on advisory boards for Amgen, AstraZeneca, Audentes, Boston Biomedical, Bristol Myers Squibb, Cytokinetics, Deciphera, Immuno-Core, Ipsen, Janssen, Myovant, Precigen Triple-Gene, Regeneron and Takeda. Y.J., J.Y. and L.H. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks T. Baetz, M. Dougan, J. Naidoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Clinical Proteomic Tumour Analysis Consortium (CPTAC): https://proteomics.cancer.gov/programs/cptac

ClinicalStudyDataRequest.com: https://clinicalstudydatarequest.com/

ClinicalTrials.gov: https://clinicaltrials.gov/

FDA Adverse Event Reporting System (FAERS): https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard

Flatiron Health: https://rwe.flatiron.com/

Gene Expression Omnibus (GEO): https://www.ncbi.nlm.nih.gov/geo/

Genotype-Tissue Expression (GTEx): https://gtexportal.org/home/

Human Protein Atlas (HPA): https://www.proteinatlas.org/

Human Tumour Atlas Network (HTAN): https://humantumoratlas.org/

IQVIA datasets: https://www.iqvia.com/solutions/real-world-evidence/real-world-data-and-insights

Optum Clinformatics: https://www.optum.com/occt

REISAMIC: https://www.reisamic.fr/

Sequence Read Archive (SRA): https://www.ncbi.nlm.nih.gov/sra

TCRdb: http://bioinfo.life.hust.edu.cn/TCRdb/

The Cancer Genome Atlas (TCGA): https://portal.gdc.cancer.gov/

UK Biobank: https://www.ukbiobank.ac.uk/

VigiBase: https://who-umc.org/vigibase/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Yang, J., Johnson, D.B. et al. Harnessing big data to characterize immune-related adverse events. Nat Rev Clin Oncol 19, 269–280 (2022). https://doi.org/10.1038/s41571-021-00597-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00597-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing