Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Recurrent pregnancy loss

Abstract

Recurrent pregnancy loss is a distressing pregnancy disorder experienced by ~2.5% of women trying to conceive. Recurrent pregnancy loss is defined as the failure of two or more clinically recognized pregnancies before 20–24 weeks of gestation and includes embryonic and fetal losses. The diagnosis of an early pregnancy loss is relatively straightforward, although progress in predicting and preventing recurrent pregnancy loss has been hampered by a lack of standardized definitions, the uncertainties surrounding the pathogenesis and the highly variable clinical presentation. The prognosis for couples with recurrent pregnancy loss is generally good, although the likelihood of a successful pregnancy depends on maternal age and the number of previous losses. Recurrent pregnancy loss can be caused by chromosomal errors, anatomical uterine defects, autoimmune disorders and endometrial dysfunction. Available treatments target the putative risk factors of pregnancy loss, although the effectiveness of many medical interventions is controversial. Regardless of the underlying aetiology, couples require accurate information on their chances of having a baby and appropriate support should be offered to reduce the psychological burden associated with multiple miscarriages. Future research must investigate the pathogenesis of recurrent pregnancy loss and evaluate novel diagnostic tests and treatments in adequately powered clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association between age and pregnancy loss.
Fig. 2: Genetic risk factors for recurrent pregnancy loss.
Fig. 3: Uterine abnormalities and recurrent pregnancy loss.
Fig. 4: Impaired endometrial function and recurrent pregnancy loss.
Fig. 5: An example of a clinical protocol for the management of recurrent pregnancy loss.

Similar content being viewed by others

References

  1. Bender Atik, R. et al. ESHRE guideline: recurrent pregnancy loss. Hum. Reprod. Open 2018, hoy004 (2018). An in-depth evaluation of the evidence base that underpins the use of diagnostic tests and treatments in the contemporary management of recurrent pregnancy loss.

    PubMed  PubMed Central  Google Scholar 

  2. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil. Steril. 98, 1103–1111 (2012). An in-depth evaluation of the evidence base that underpins the use of diagnostic tests and treatments in the contemporary management of recurrent pregnancy loss.

    Google Scholar 

  3. Alijotas-Reig, J. & Garrido-Gimenez, C. Current concepts and new trends in the diagnosis and management of recurrent miscarriage. Obstet. Gynecol. Surv. 68, 445–466 (2013).

    PubMed  Google Scholar 

  4. van Dijk, M. M. et al. Recurrent pregnancy loss: diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis. Hum. Reprod. Update 26, 356–367 (2020).

    PubMed  PubMed Central  Google Scholar 

  5. Chard, T. Frequency of implantation and early pregnancy loss in natural cycles. Baillieres Clin. Obstet. Gynaecol. 5, 179–189 (1991).

    CAS  PubMed  Google Scholar 

  6. Wilcox, A. J. et al. Incidence of early loss of pregnancy. N. Engl. J. Med. 319, 189–194 (1988).

    CAS  PubMed  Google Scholar 

  7. Homer, H. Modern management of recurrent miscarriage. Aust. N. Z J. Obstet. Gynaecol. 59, 36–44 (2019).

    PubMed  Google Scholar 

  8. Adolfsson, A. & Larsson, P. G. Cumulative incidence of previous spontaneous abortion in Sweden in 1983-2003: a register study. Acta Obstet. Gynecol. Scand. 85, 741–747 (2006).

    PubMed  Google Scholar 

  9. Hemminki, E. & Forssas, E. Epidemiology of miscarriage and its relation to other reproductive events in Finland. Am. J. Obstet. Gynecol. 181, 396–401 (1999).

    CAS  PubMed  Google Scholar 

  10. Nybo Andersen, A. M., Wohlfahrt, J., Christens, P., Olsen, J. & Melbye, M. Maternal age and fetal loss: population based register linkage study. BMJ 320, 1708–1712 (2000).

    CAS  PubMed  Google Scholar 

  11. Almeida, N. D., Basso, O., Abrahamowicz, M., Gagnon, R. & Tamblyn, R. Risk of miscarriage in women receiving antidepressants in early pregnancy, correcting for induced abortions. Epidemiology 27, 538–546 (2016).

    PubMed  Google Scholar 

  12. Ammon Avalos, L., Galindo, C. & Li, D. K. A systematic review to calculate background miscarriage rates using life table analysis. Birth Defects Res. A Clin. Mol. Teratol. 94, 417–423 (2012).

    CAS  PubMed  Google Scholar 

  13. Rossen, L. M., Ahrens, K. A. & Branum, A. M. Trends in risk of pregnancy loss among US women, 1990-2011. Paediatr. Perinat. Epidemiol. 32, 19–29 (2018).

    PubMed  Google Scholar 

  14. Zinaman, M. J., Clegg, E. D., Brown, C. C., O’Connor, J. & Selevan, S. G. Estimates of human fertility and pregnancy loss. Fertil. Steril. 65, 503–509 (1996).

    CAS  PubMed  Google Scholar 

  15. Magnus, M. C., Wilcox, A. J., Morken, N.-H., Weinberg, C. R. & Håberg, S. E. Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study. BMJ 364, l869 (2019). This study found that the risk of recurrent miscarriage is independent of maternal age, which implies that causes other than embryonic aneuploidy account for higher order miscarriages.

    PubMed  PubMed Central  Google Scholar 

  16. Kutteh, W. H. in Williams Obstetrics (ed Cunningham F. G.) 1–14 (Appleton and Lange, 1995).

  17. Rasmark Roepke, E., Matthiesen, L., Rylance, R. & Christiansen, O. B. Is the incidence of recurrent pregnancy loss increasing? A retrospective register-based study in Sweden. Acta Obstet. Gynecol. Scand. 96, 1365–1372 (2017).

    PubMed  Google Scholar 

  18. Risch, H. A., Weiss, N. S., Clarke, E. A. & Miller, A. B. Risk factors for spontaneous abortion and its recurrence. Am. J. Epidemiol. 128, 420–430 (1988).

    CAS  PubMed  Google Scholar 

  19. Knudsen, U. B., Hansen, V., Juul, S. & Secher, N. J. Prognosis of a new pregnancy following previous spontaneous abortions. Eur. J. Obstet. gynecol., Reprod. Biol. 39, 31–36 (1991).

    CAS  Google Scholar 

  20. Kling, C., Hedderich, J. & Kabelitz, D. Fertility after recurrent miscarriages: results of an observational cohort study. Arch. Gynecol. Obstet. 297, 205–219 (2018).

    PubMed  Google Scholar 

  21. Saravelos, S. H. & Li, T.-C. Unexplained recurrent miscarriage: how can we explain it? Hum. Reprod. 27, 1882–1886 (2012).

    PubMed  Google Scholar 

  22. Fretts, R. C., Schmittdiel, J., McLean, F. H., Usher, R. H. & Goldman, M. B. Increased maternal age and the risk of fetal death. N. Engl. J. Med. 333, 953–957 (1995).

    CAS  PubMed  Google Scholar 

  23. Berkowitz, G. S., Skovron, M. L., Lapinski, R. H. & Berkowitz, R. L. Delayed childbearing and the outcome of pregnancy. N. Engl. J. Med. 322, 659–664 (1990).

    CAS  PubMed  Google Scholar 

  24. Cohain, J. S., Buxbaum, R. E. & Mankuta, D. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more. BMC Pregnancy Childbirth 17, 437 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291 (2001).

    CAS  PubMed  Google Scholar 

  26. Gabriel, A. S. et al. An algorithm for determining the origin of trisomy and the positions of chiasmata from SNP genotype data. Chromosome Res. 19, 155–163 (2011).

    CAS  PubMed  Google Scholar 

  27. Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Capalbo, A., Hoffmann, E. R., Cimadomo, D., Ubaldi, F. M. & Rienzi, L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum. Reprod. Update 23, 706–722 (2017).

    CAS  PubMed  Google Scholar 

  29. Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365, 1466–1469 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maconochie, N., Doyle, P., Prior, S. & Simmons, R. Risk factors for first trimester miscarriage — results from a UK-population-based case–control study. BJOG 114, 170–186 (2007).

    CAS  PubMed  Google Scholar 

  31. Ogasawara, M., Aoki, K., Okada, S. & Suzumori, K. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil. Steril. 73, 300–304 (2000).

    CAS  PubMed  Google Scholar 

  32. Coomarasamy, A. et al. Micronized vaginal progesterone to prevent miscarriage: a critical evaluation of randomized evidence. Am. J. Obstet. Gynecol. 223, 167–176 (2020). This paper demonstrates that pregnant women with a history of one or more previous miscarriages benefit from progesterone treatment, especially when experiencing vaginal bleeding in pregnancy.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pereza, N., Ostojić, S., Kapović, M. & Peterlin, B. Systematic review and meta-analysis of genetic association studies in idiopathic recurrent spontaneous abortion. Fertil. Steril. 107, 150–159.e2 (2017).

    PubMed  Google Scholar 

  34. Colley, E. et al. Potential genetic causes of miscarriage in euploid pregnancies: a systematic review. Hum. Reprod. Update 25, 452–472 (2019).

    CAS  PubMed  Google Scholar 

  35. Laisk, T. et al. The genetic architecture of sporadic and recurrent miscarriage. Preprint at bioRxiv https://doi.org/10.1101/575167 (2019).

    Article  Google Scholar 

  36. Kolte, A. M. et al. A genome-wide scan in affected sibling pairs with idiopathic recurrent miscarriage suggests genetic linkage. Mol. Hum. Reprod. 17, 379–385 (2011).

    CAS  PubMed  Google Scholar 

  37. Woolner, A. M. F., Nagdeve, P., Raja, E. A., Bhattacharya, S. & Bhattacharya, S. Family history and risk of miscarriage: a systematic review and meta-analysis of observational studies. Acta Obstet. Gynecol. Scand. https://doi.org/10.1111/aogs.13940 (2020).

    Article  PubMed  Google Scholar 

  38. Krieg, S. A., Shahine, L. K. & Lathi, R. B. Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil. Steril. 106, 941–947 (2016).

    CAS  PubMed  Google Scholar 

  39. Xue, T., Zhu, T., Geng, G. & Zhang, Q. Association between pregnancy loss and ambient PM(2·5) using survey data in Africa: a longitudinal case-control study, 1998-2016. Lancet Planet. Health 3, e219–ee225 (2019).

    PubMed  Google Scholar 

  40. Zhang, L. et al. Air pollution-induced missed abortion risk for pregnancies. Nat. Sustain. 2, 1011–1017 (2019).

    Google Scholar 

  41. Orzack, S. H. et al. The human sex ratio from conception to birth. Proc. Natl Acad Sci. U. S. A. 112, E2102–E2111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mulley, J. F. Greater loss of female embryos during human pregnancy: a novel mechanism. BioEssays 41, e1900063 (2019).

    PubMed  Google Scholar 

  43. Cha, J., Sun, X. & Dey, S. K. Mechanisms of implantation: strategies for successful pregnancy. Nat. Med. 18, 1754–1767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Evans, J. et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat. Rev. Endocrinol. 12, 654–667 (2016).

    CAS  PubMed  Google Scholar 

  45. Gellersen, B. & Brosens, J. J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35, 851–905 (2014).

    CAS  PubMed  Google Scholar 

  46. Rytkonen, K. T. et al. Decidualization of human endometrial stromal fibroblasts is a multiphasic process involving distinct transcriptional programs. Reprod. Sci. 26, 323–336 (2019).

    CAS  PubMed  Google Scholar 

  47. Erkenbrack, E. M. et al. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol. 16, e2005594 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Brighton, P. J. et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 6, e31274 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Lucas, E. S. et al. Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window. Commun. Biol. 3, 37–37 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. Grewal, S., Carver, J. G., Ridley, A. J. & Mardon, H. J. Implantation of the human embryo requires Rac1-dependent endometrial stromal cell migration. Proc. Natl Acad. Sci. USA 105, 16189 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Weimar, C. et al. Endometrial stromal cells of women with recurrent miscarriage fail to discriminate betwen high and low-quality human embryos. PLoS ONE 7, e41424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gellersen, B., Brosens, I. A. & Brosens, J. J. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin. Reprod. Med. 25, 445–453 (2007).

    CAS  PubMed  Google Scholar 

  53. Menkhorst, E. et al. Invasive trophoblast promote stromal fibroblast decidualization via Profilin 1 and ALOX5. Sci. Rep. 7, 8690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Deryabin, P., Griukova, A., Nikolsky, N. & Borodkina, A. The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance. Cell. Mol. Life Sci. 77, 1357–1370 (2020).

    CAS  PubMed  Google Scholar 

  55. Pijnenborg, R., Dixon, G., Robertson, W. B. & Brosens, I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1, 3–19 (1980).

    CAS  PubMed  Google Scholar 

  56. Pijnenborg, R., Bland, J. M., Robertson, W. B. & Brosens, I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 4, 397–413 (1983).

    CAS  PubMed  Google Scholar 

  57. Lunghi, L., Ferretti, M., Medici, S., Biondi, C. & Vesce, F. Control of human trophoblast function. Reprod. Biol. Endocrinol. 5, 6 (2007).

    PubMed  PubMed Central  Google Scholar 

  58. Burton, G. J., Jauniaux, E. & Charnock-Jones, D. S. The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312 (2010).

    CAS  PubMed  Google Scholar 

  59. James, J. L., Stone, P. R. & Chamley, L. W. The effects of oxygen concentration and gestational age on extravillous trophoblast outgrowth in a human first trimester villous explant model. Hum. Reprod. 21, 2699–2705 (2006).

    PubMed  Google Scholar 

  60. Lash, G. E. et al. Low oxygen concentrations inhibit trophoblast cell invasion from early gestation placental explants via alterations in levels of the urokinase plasminogen activator system. Biol. Reprod. 74, 403–409 (2006).

    CAS  PubMed  Google Scholar 

  61. Murakami, K. et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology 155, 4542–4553 (2014).

    PubMed  Google Scholar 

  62. Aplin, J. D., Myers, J. E., Timms, K. & Westwood, M. Tracking placental development in health and disease. Nat. Rev. Endocrinol. 16, 479–494 (2020).

    CAS  PubMed  Google Scholar 

  63. Menkhorst, E., Van Sinderen, M., Correia, J. & Dimitriadis, E. Trophoblast function is altered by decidual factors in gestation-dependent manner. Placenta 80, 8–11 (2019).

    CAS  PubMed  Google Scholar 

  64. Burton, G. J. & Jauniaux, E. What is the placenta? Am. J. Obstet. Gynecol. 213, S6.E1–S6.E4 (2015).

    Google Scholar 

  65. Kelleher, A. M., Milano-Foster, J., Behura, S. K. & Spencer, T. E. Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nat. Commun. 9, 2435 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Burton, G. J. & Jauniaux, E. The cytotrophoblastic shell and complications of pregnancy. Placenta 60, 134–139 (2017).

    CAS  PubMed  Google Scholar 

  67. McCloskey, C. et al. The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy. EMBO Mol. Med. 6, 1161–1174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stenman, U. H., Tiitinen, A., Alfthan, H. & Valmu, L. The classification, functions and clinical use of different isoforms of HCG. Hum. Reprod. Update 12, 769–784 (2006).

    CAS  PubMed  Google Scholar 

  69. Csapo, A. The luteo-placental shift, the guardian of pre-natal life. Postgrad. Med. J. 45, 57–64 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Catenaccio, E., Mu, W. & Lipton, M. L. Estrogen- and progesterone-mediated structural neuroplasticity in women: evidence from neuroimaging. Brain Struct. Funct. 221, 3845–3867 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, T., Sun, Y., Chen, Z. & Li, T. Traditional and molecular chromosomal abnormality analysis of products of conception in spontaneous and recurrent miscarriage. BJOG 125, 414–420 (2018).

    CAS  PubMed  Google Scholar 

  72. Sullivan, A. E., Silver, R. M., LaCoursiere, D. Y., Porter, T. F. & Branch, D. W. Recurrent fetal aneuploidy and recurrent miscarriage. Obstet. Gynecol. 104, 784–788 (2004).

    PubMed  Google Scholar 

  73. Ozawa, N. et al. Maternal age, history of miscarriage, and embryonic/fetal size are associated with cytogenetic results of spontaneous early miscarriages. J. Assist. Reprod. Genet. 36, 749–757 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Stephenson, M. D., Awartani, K. A. & Robinson, W. P. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum. Reprod. 17, 446–451 (2002).

    CAS  PubMed  Google Scholar 

  75. Robberecht, C. et al. Cytogenetic and morphological analysis of early products of conception following hystero-embryoscopy from couples with recurrent pregnancy loss. Prenat. Diagn. 32, 933–942 (2012).

    PubMed  Google Scholar 

  76. Popescu, F., Jaslow, C. R. & Kutteh, W. H. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum. Reprod. 33, 579–587 (2018).

    CAS  PubMed  Google Scholar 

  77. Wang, H. et al. Cytogenetic and genetic investigation of miscarriage cases in Eastern China. J. Matern. Fetal Neonatal. Med. 33, 3385–3390 (2020).

    CAS  PubMed  Google Scholar 

  78. Rajcan-Separovic, E. Next generation sequencing in recurrent pregnancy loss–approaches and outcomes. Eur. J. Med. Genet. 63, 103644 (2020).

    PubMed  Google Scholar 

  79. Grande, M. et al. The effect of maternal age on chromosomal anomaly rate and spectrum in recurrent miscarriage. Hum. Reprod. 27, 3109–3117 (2012).

    PubMed  Google Scholar 

  80. Segawa, T. et al. Cytogenetic analysis of the retained products of conception after missed abortion following blastocyst transfer: a retrospective, large-scale, single-centre study. Reprod. Biomed. Online 34, 203–210 (2017).

    PubMed  Google Scholar 

  81. Stern, J. J., Dorfmann, A. D., Gutierrez-Najar, A. J., Cerrillo, M. & Coulam, C. B. Frequency of abnormal karyotypes among abortuses from women with and without a history of recurrent spontaneous abortion. Fertil. Steril. 65, 250–253 (1996).

    CAS  PubMed  Google Scholar 

  82. Goldstein, M., Svirsky, R., Reches, A. & Yaron, Y. Does the number of previous miscarriages influence the incidence of chromosomal aberrations in spontaneous pregnancy loss? J. Matern. Fetal Neonatal Med. 30, 2956–2960 (2017).

    PubMed  Google Scholar 

  83. Morikawa, M. et al. Embryo loss pattern is predominant in miscarriages with normal chromosome karyotype among women with repeated miscarriage. Hum. Reprod. 19, 2644–2647 (2004).

    PubMed  Google Scholar 

  84. Starostik, M. R., Sosina, O. A. & McCoy, R. C. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 30, 814–825 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Hahnemann, J. M. & Vejersley, L. O. European collaborative research on mosaicism in CVS (EUCROMIC) – fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving a single autosomal trisomy. Am. J. Med. Genet. 70, 179–187 (1997).

    CAS  PubMed  Google Scholar 

  86. Kaser, D. The status of genetic screening in recurrent pregnancy loss. Reprod. Genet. 45, 143–154 (2018).

    Google Scholar 

  87. Nikitina, T. V. et al. Karyoype evaluation of repoeated abortions in primary and secondary recurrent pregnancy loss. J. Assist. Reprod. Genet. 37, 517–525 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hardy, K., Hardy, P. J., Jacobs, P. A., Lewallen, K. & Hassold, T. J. Temporal changes in chromosome abnormalities in human spontaneous abortions: results of 40 years of analysis. Am. J. Med. Genet. Part A 170, 2671–2680 (2016). This analysis of 8,319 spontaneous abortions collected over a 40-year time period shows that fetal aneuploidies are ‘hardwired’ in reproduction, with no evidence of impact of geography or ancestry.

    CAS  PubMed  Google Scholar 

  89. Stephenson, M. D. & Sierra, S. Reproductive outcomes in recurrent pregnancy loss associated with a parental carrier of a structural chromosome rearrangement. Hum. Reprod. 21, 1076–1082 (2006).

    PubMed  Google Scholar 

  90. Sugiura-Ogasawara, M. et al. Subsequent pregnancy outcomes in recurrent miscarriage patients with a paternal or maternal carrier of a structural chromosome rearrangement. J. Hum. Genet. 53, 622–628 (2008).

    PubMed  Google Scholar 

  91. Braekeleer, M. D. & Dao, T.-N. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum. Reprod. 5, 519–528 (1990).

    PubMed  Google Scholar 

  92. Fan, H.-T. et al. Structural chromosomal abnormalities in couples in cases of recurrent spontaneous abortions in Jilin Province, China. Genet. Mol. Res. 15, gmr.15017443 (2016).

    Google Scholar 

  93. Priya, P. K., Mishra, V. V., Roy, P. & Patel, H. A study on balanced chromosomal translocations in couples with recurrent pregnancy loss. J. Hum. Reprod. Sci. 11, 337–342 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Zhao, Y. et al. Identification of cryptic structural chromosomal aberrations in parents through detection of copy number variations in miscarriage tissues. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 36, 1123–1126 (2019).

    PubMed  Google Scholar 

  95. Ibrahim, Y. & Johnstone, E. The male contribution to recurrent pregnancy loss. Transl Androl. Urol. 7, S317–s327 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Carlini, T. et al. Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod. Biomed. Online 34, 58–65 (2017).

    PubMed  Google Scholar 

  97. Zidi-Jrah, I. et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil. Steril. 105, 58–64 (2016).

    CAS  PubMed  Google Scholar 

  98. Kirkman-Brown, J. et al. in Sperm Selection for Assisted Reproduction by Prior Hyaluronan Binding: the HABSelect RCT (NIHR Journals Library, 2019).

  99. McCoy, R. C. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 11, e1005601 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Chan, Y. Y. et al. The prevalence of congenital uterine anomalies in unselected and high-risk populations: a systematic review. Hum. Reprod. Update 17, 761–771 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jaslow, C. R. & Kutteh, W. H. Effect of prior birth and miscarriage frequency on the prevalence of acquired and congenital uterine anomalies in women with recurrent miscarriage: a cross-sectional study. Fertil. Steril. 99, 1916–1922.e1 (2013).

    PubMed  Google Scholar 

  102. Saravelos, S. H., Cocksedge, K. A. & Li, T.-C. The pattern of pregnancy loss in women with congenital uterine anomalies and recurrent miscarriage. Reprod. BioMedicine Online 20, 416–422 (2010).

    Google Scholar 

  103. Turocy, J. M. & Rackow, B. W. Uterine factor in recurrent pregnancy loss. Semin. Perinatol. 43, 74–79 (2019).

    PubMed  Google Scholar 

  104. Puente, E. et al. Chronic endometritis: old problem, novel insights and future challenges. Int. J. Fertil. Steril.

  105. Li, Y. et al. Evaluation of peripheral and uterine immune status of chronic endometritis in patients with recurrent reproductive failure. Fertil. Steril. 113, 187–196.e1 (2020).

    CAS  PubMed  Google Scholar 

  106. Cicinelli, E. et al. Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment. Reprod. Sci. 21, 640–647 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Moreno, I. et al. The diagnosis of chronic endometritis in infertile asymptomatic women: a comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am. J. Obstet. Gynecol. 218, 602.e1–602.e16 (2018).

    Google Scholar 

  108. Giraldo-Isaza, M. A., Jaspan, D. & Cohen, A. W. Postpartum endometritis caused by herpes and cytomegaloviruses. Obstet. Gynecol. 117, 466–467 (2011).

    PubMed  Google Scholar 

  109. Bouet, P.-E. et al. Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil. Steril. 105, 106–110 (2016).

    PubMed  Google Scholar 

  110. McQueen, D. B., Bernardi, L. A. & Stephenson, M. D. Chronic endometritis in women with recurrent early pregnancy loss and/or fetal demise. Fertil. Steril. 101, 1026–1030 (2014).

    PubMed  Google Scholar 

  111. McQueen, D. B., Perfetto, C. O., Hazard, F. K. & Lathi, R. B. Pregnancy outcomes in women with chronic endometritis and recurrent pregnancy loss. Fertil. Steril. 104, 927–931 (2015).

    PubMed  Google Scholar 

  112. Ewington, L. J., Tewary, S. & Brosens, J. J. New insights into the mechanisms underlying recurrent pregnancy loss. J. Obstet. Gynaecol. Res. 45, 258–265 (2019).

    PubMed  Google Scholar 

  113. Salker, M. et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE 5, e10287 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. Salker, M. S. et al. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat. Med. 17, 1509–1513 (2011).

    CAS  PubMed  Google Scholar 

  115. Salker, M. S. et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS ONE 7, e52252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Haig, D. Cooperation and conflict in human pregnancy. Curr. Biol. 29, R455–R458 (2019).

    CAS  PubMed  Google Scholar 

  117. Schulte, M. M. B., Tsai, J.-H. & Moley, K. H. Obesity and PCOS: the effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod. Sci. 22, 6–14 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Wu, D. et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod. Biol. Endocrinol. 15, 16 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Kakita-Kobayashi, M. et al. Thyroid hormone facilitates in vitro decidualization of human endometrial stromal cells via thyroid hormone receptors. Endocrinology 161, bqaa049 (2020).

    PubMed  Google Scholar 

  120. Lucas, E. S. et al. Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells 34, 346–356 (2016).

    CAS  PubMed  Google Scholar 

  121. Tewary, S. et al. Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: a randomised, double-blind placebo-controlled feasibility trial. EBioMedicine 51, 102597 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Tal, R. et al. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol. 17, e3000421 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Macklon, N. S. & Brosens, J. J. The human endometrium as a sensor of embryo quality1. Biol. Reprod. 91, 98 (2014).

    PubMed  Google Scholar 

  124. Teklenburg, G. et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS ONE 5, e10258 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. Brosens, J. J. et al. Uterine selection of human embryos at implantation. Sci. Rep. 4, 3894 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ticconi, C. et al. Time-to-pregnancy in women with unexplained recurrent pregnancy loss: a controlled study. Reprod. Sci. 27, 1121–1128 (2020).

    PubMed  Google Scholar 

  127. Evers, J. L. H. Female subfertility. Lancet 360, P151–P159 (2002).

    Google Scholar 

  128. Menkhorst, E., Winship, A., Van Sinderen, M. & Dimitriadis, E. Human extravillous trophoblast invasion: intrinsic and extrinsic regulation. Reprod., Fertil. Dev. 28, 406–415 (2015).

    Google Scholar 

  129. Windsperger, K. et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum. Reprod. 32, 1208–1217 (2017).

    CAS  PubMed  Google Scholar 

  130. Menkhorst, E. M. et al. Galectin-7 acts as an adhesion molecule during implantation and increased expression is associated with miscarriage. Placenta 35, 195–201 (2014).

    CAS  PubMed  Google Scholar 

  131. Quenby, S., Anim-Somuah, M., Kalumbi, C., Farquharson, R. & Aplin, J. D. Different types of recurrent miscarriage are associated with varying patterns of adhesion molecule expression in endometrium. Reprod. Biomed. Online 14, 224–234 (2007).

    CAS  PubMed  Google Scholar 

  132. Williams, P. J., Bulmer, J. N., Searle, R. F., Innes, B. A. & Robson, S. C. Altered decidual leucocyte populations in the placental bed in pre-eclampsia and foetal growth restriction: a comparison with late normal pregnancy. Reproduction 138, 177–184 (2009).

    CAS  PubMed  Google Scholar 

  133. Ticconi, C., Pietropolli, A., Di Simone, N., Piccone, E. & Fazleabas, A. Endometrial immune dysfunction in recurrent pregnancy loss. Int. J. Mol. Sci. 20, 5332 (2019).

    CAS  PubMed Central  Google Scholar 

  134. Bulmer, J. N., Williams, P. J. & Lash, G. E. Immune cells in the placental bed. Int. J. Dev. Biol. 54, 281–294 (2010).

    PubMed  Google Scholar 

  135. Vinketova, K., Mourdjeva, M. & Oreshkova, T. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity. J. Pregnancy 2016, 8689436 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Bhandari, H., Tan, B. & Quenby, S. Superfertility is more prevalent in obese women with recurrent early pregnancy miscarriage. BJOG 123, 217–222 (2016).

    CAS  PubMed  Google Scholar 

  137. Marron, K., Walsh & Harrity, C. Detailed endometrial immune assessment of both normal and reproductive outcome populations. J. Assist. Reprod. Genet. 36, 199–210 (2019).

    PubMed  Google Scholar 

  138. Fu, B. et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113.e6 (2017).

    CAS  PubMed  Google Scholar 

  139. Gamliel, M. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity 48, 951–962.e5 (2018).

    CAS  PubMed  Google Scholar 

  140. Miyaji, M. et al. Clinical factors associated with pregnancy outcome in women with recurrent pregnancy loss. Gynecol. Endocrinol. 35, 913–918 (2019).

    PubMed  Google Scholar 

  141. Marron, K. & Harrity, C. Endometrial lymphocyte concentrations in adverse reproductive outcome populations. J. Assist. Reprod. Genet. 36, 837–846 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    CAS  PubMed  Google Scholar 

  143. Saito, S., Nakashima, A., Shima, T. & Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 63, 601–610 (2010).

    CAS  PubMed  Google Scholar 

  144. Inada, K. et al. Characterization of regulatory T cells in decidua of miscarriage cases with abnormal or normal fetal chromosomal content. J. Reprod. Immunol. 97, 104–111 (2013).

    CAS  PubMed  Google Scholar 

  145. Lu, Y. et al. IFN-γ and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity. Blood 119, 1075–1085 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, S. et al. Downregulation of ILT4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. Am. J. Reprod. Immunol. 80, e12998 (2018).

    PubMed  Google Scholar 

  147. Plaks, V. et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J. Clin. Invest. 118, 3954–3965 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nancy, P. et al. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336, 1317–1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Morita, K. et al. Analysis of TCR repertoire and PD-1 expression in decidual and peripheral CD8(+) T cells reveals distinct immune mechanisms in miscarriage and preeclampsia. Front. Immunol. 11, 1082 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Carp, H. Immunotherapy for recurrent pregnancy loss. Best Pract. Res. Clin. Obstet. Gynaecol. 60, 77–86 (2019).

    PubMed  Google Scholar 

  151. Papas, R. S. & Kutteh, W. H. A new algorithm for the evaluation of recurrent pregnancy loss redefining unexplained miscarriage: review of current guidelines. Curr. Opin. Obstet. Gynecol. 32, 371–379 (2020).

    PubMed  Google Scholar 

  152. Regan, L., Backos, M. & Rai, R. The Investigation and Treatment of Couples with Recurrent First-trimester and Second-trimester Miscarriage: Green-top Guideline No. 17 (RCOG, 2011).

  153. Kutteh, W. H. Antiphospholipid antibody syndrome and reproduction. Curr. Opin. Obstet. Gynecol. 26, 260–265 (2014).

    PubMed  Google Scholar 

  154. Kutteh, W. H. Novel strategies for the management of recurrent pregnancy loss. Semin. Reprod. Med. 33, 161–168 (2015).

    PubMed  Google Scholar 

  155. Schreiber, K. et al. Antiphospholipid syndrome. Nat. Rev. Dis. Prim. 4, 17103 (2018).

    PubMed  Google Scholar 

  156. Marchetti, T., Cohen, M. & de Moerloose, P. Obstetrical antiphospholipid syndrome: from the pathogenesis to the clinical and therapeutic implications. Clin. Dev. Immunol. 2013, 159124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Alijotas-Reig, J. et al. The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): a survey of 1000 consecutive cases. Autoimmun. Rev. 18, 406–414 (2019).

    PubMed  Google Scholar 

  158. Meroni, P. L. et al. Obstetric and vascular antiphospholipid syndrome: same antibodies but different diseases? Nat. Rev. Rheumatol. 14, 433–440 (2018).

    CAS  PubMed  Google Scholar 

  159. Committee on Practice Bulletins — Obstetrics, American College of Obstetricians and Gynecologists. Practice Bulletin No. 132: Antiphospholipid syndrome. Obstet. Gynecol. 120, 1514–1521 (2012).

    Google Scholar 

  160. Bates, S. M. et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141, e691S–e736S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bouvier, S. et al. Comparative incidence of pregnancy outcomes in treated obstetric antiphospholipid syndrome: the NOH-APS observational study. Blood 123, 404–413 (2014).

    CAS  PubMed  Google Scholar 

  162. Chamley, L. W., Duncalf, A. M., Mitchell, M. D. & Johnson, P. M. Action of anticardiolipin and antibodies to β2-glycoprotein-I on trophoblast proliferation as a mechanism for fetal death. Lancet 352, 1037–1038 (1998).

    CAS  PubMed  Google Scholar 

  163. Regal, J. F., Gilbert, J. S. & Burwick, R. M. The complement system and adverse pregnancy outcomes. Mol. Immunol. 67, 56–70 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Salmon, J. E., Girardi, G. & Holers, V. M. Activation of complement mediates antiphospholipid antibody-induced pregnancy loss. Lupus 12, 535–538 (2003).

    CAS  PubMed  Google Scholar 

  165. Pierangeli, S. S. et al. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 52, 2120–2124 (2005).

    CAS  PubMed  Google Scholar 

  166. D’Ippolito, S. et al. The pathogenic role of autoantibodies in recurrent pregnancy loss. Am. J. Reprod. Immunol. 83, e13200 (2020).

    PubMed  Google Scholar 

  167. Kutteh, W. H., Yetman, D. L., Carr, A. C., Beck, L. A. & Scott, R. T. Jr. Increased prevalence of antithyroid antibodies identified in women with recurrent pregnancy loss but not in women undergoing assisted reproduction. Fertil. Steril. 71, 843–848 (1999).

    CAS  PubMed  Google Scholar 

  168. Dhillon-Smith, R. K. et al. Levothyroxine in women with thyroid peroxidase antibodies before conception. N. Engl. J. Med. 380, 1316–1325 (2019).

    CAS  PubMed  Google Scholar 

  169. Dong, A. C., Morgan, J., Kane, M., Stagnaro-Green, A. & Stephenson, M. D. Subclinical hypothroidism and thyroid autoimmunity in recurrent pregnancy loss: a systemic review and meta-analysis. Fertil. Steril. 113, 587–600 (2020).

    CAS  PubMed  Google Scholar 

  170. van den Boogaard, E. et al. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum. Reprod. Update 17, 605–619 (2011).

    PubMed  Google Scholar 

  171. Legro, R. S. et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98, 4565–4592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Boomsma, C. M., Fauser, B. C. & Macklon, N. S. Pregnancy complications in women with polycystic ovary syndrome. Semin. Reprod. Med. 26, 72–84 (2008).

    PubMed  Google Scholar 

  173. Cocksedge, K. A., Saravelos, S. H., Metwally, M. & Li, T. C. How common is polycystic ovary syndrome in recurrent miscarriage? Reprod. BioMedicine Online 19, 572–576 (2009).

    CAS  Google Scholar 

  174. Sugiura-Ogasawara, M. et al. The polycystic ovary syndrome does not predict further miscarriage in Japanese couples experiencing recurrent miscarriages. Am. J. Reprod. Immunol. 61, 62–67 (2009).

    PubMed  Google Scholar 

  175. Lashen, H., Fear, K. & Sturdee, D. W. Obesity is associated with increased risk of first trimester and recurrent miscarriage: matched case-control study. Hum. Reprod. 19, 1644–1646 (2004).

    CAS  PubMed  Google Scholar 

  176. Boots, C. & Stephenson, M. D. Does obesity increase the risk of miscarriage in spontaneous conception: a systematic review. Semin. Reprod. Med. 29, 507–513 (2011).

    PubMed  Google Scholar 

  177. Cavalcante, M. B., Sarno, M., Peixoto, A. B., Araujo Júnior, E. & Barini, R. Obesity and recurrent miscarriage: a systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 45, 30–38 (2019).

    PubMed  Google Scholar 

  178. Boots, C. E., Bernardi, L. A. & Stephenson, M. D. Frequency of euploid miscarriage is increased in obese women with recurrent early pregnancy loss. Fertil. Steril. 102, 455–459 (2014).

    PubMed  Google Scholar 

  179. Rhee, J. S. et al. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum. Reprod. 31, 1315–1326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Murakami, K. et al. Deficiency in clonogenic endometrial mesenchymal stem cells in obese women with reproductive failure – a pilot study. PLoS ONE 8, e82582 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. Antoniotti, G. S., Coughlan, M., Salamonsen, L. A. & Evans, J. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence. Hum. Reprod. 33, 654–665 (2018).

    CAS  PubMed  Google Scholar 

  182. Gonçalves, D. R., Braga, A., Braga, J. & Marinho, A. Recurrent pregnancy loss and vitamin D: a review of the literature. Am. J. Reprod. Immunol. 80, e13022 (2018).

    PubMed  Google Scholar 

  183. Ota, K. et al. Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity. Hum. Reprod. 29, 208–219 (2013).

    PubMed  Google Scholar 

  184. Chu, J. et al. Vitamin D and assisted reproductive treatment outcome: a prospective cohort study. Reprod. Health 16, 106 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Mumford, S. L. et al. Association of preconception serum 25-hydroxyvitamin D concentrations with livebirth and pregnancy loss: a prospective cohort study. Lancet Diabetes Endocrinol. 6, 725–732 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bradley, L. A., Palomaki, G. E., Bienstock, J., Varga, E. & Scott, J. A. Can Factor V Leiden and prothrombin G20210A testing in women with recurrent pregnancy loss result in improved pregnancy outcomes?: results from a targeted evidence-based review. Genet. Med. 14, 39–50 (2012).

    CAS  PubMed  Google Scholar 

  187. Mitriuc, D., Popuşoi, O., Catrinici, R. & Friptu, V. The obstetric complications in women with hereditary thrombophilia. Med. Pharm. Rep. 92, 106–110 (2019).

    PubMed  PubMed Central  Google Scholar 

  188. Robertson, L. et al. Thrombophilia in pregnancy: a systematic review. Br. J. Haematol. 132, 171–196 (2006).

    CAS  PubMed  Google Scholar 

  189. Green, D. M. & O’Donoghue, K. A review of reproductive outcomes of women with two consecutive miscarriages and no living child. J. Obstet. Gynaecol. 39, 816–821 (2019).

    PubMed  Google Scholar 

  190. Jeve, Y., Rana, R., Bhide, A. & Thangaratinam, S. Accuracy of first-trimester ultrasound in the diagnosis of early embryonic demise: a systematic review. Ultrasound Obstet. Gynecol. 38, 489–496 (2011).

    CAS  PubMed  Google Scholar 

  191. Brown, D. L. et al. ACR Appropriateness Criteria® first trimester vaginal bleeding. J. Am. Coll. Radiol. 15, S69–S77 (2018).

    PubMed  Google Scholar 

  192. National Collaborating Centre for Women’s and Children’s, Health. Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management in Early Pregnancy of Ectopic Pregnancy and Miscarriage (RCOG, 2012).

  193. Preisler, J. et al. Defining safe criteria to diagnose miscarriage: prospective observational multicentre study. BMJ 351, h4579 (2015).

    PubMed  PubMed Central  Google Scholar 

  194. Pillai, R. N., Konje, J. C., Tincello, D. G. & Potdar, N. Role of serum biomarkers in the prediction of outcome in women with threatened miscarriage: a systematic review and diagnostic accuracy meta-analysis. Hum. Reprod. Update 22, 228–239 (2016).

    CAS  PubMed  Google Scholar 

  195. Ghazeeri, G. S. & Kutteh, W. H. Immunological testing and treatment in reproduction: frequency assessment of practice patterns at assisted reproduction clinics in the USA and Australia. Hum. Reprod. 16, 2130–2135 (2001).

    CAS  PubMed  Google Scholar 

  196. Morita, K. et al. Risk factors and outcomes of recurrent pregnancy loss in Japan. J. Obstet. Gynaecol. Res. 45, 1997–2006 (2019).

    CAS  PubMed  Google Scholar 

  197. Flynn, H., Yan, J., Saravelos, S. H. & Li, T.-C. Comparison of reproductive outcome, including the pattern of loss, between couples with chromosomal abnormalities and those with unexplained repeated miscarriages. J. Obstet. Gynaecol. Res. 40, 109–116 (2014).

    PubMed  Google Scholar 

  198. Franssen, M. T. M. et al. Reproductive outcome after chromosome analysis in couples with two or more miscarriages: case-control study. BMJ 332, 759–763 (2006).

    PubMed  PubMed Central  Google Scholar 

  199. Zhang, Y. et al. Selective growth of mosaic cells in chromosomal analysis of chorionic villi by conventional karyotyping. Mol. Cell. Probes. 51, 101532 (2020).

    CAS  PubMed  Google Scholar 

  200. Kudesia, R., Li, M., Smith, J., Patel, A. & Williams, Z. Rescue karyotyping: a case series of array-based comparative genomic hybridization evaluation of archival conceptual tissue. Reprod. Biol. Endocrinol. 12, 19 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Maisenbacher, M. K., Merrion, K. & Kutteh, W. H. Single-nucleotide polymorphism microarray detects molar pregnancies in 3% of miscarriages. Fertil. Steril. 112, 700–706 (2019).

    CAS  PubMed  Google Scholar 

  202. Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 49, 36–45 (2017).

    CAS  PubMed  Google Scholar 

  203. Sahoo, T. et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet. Med. 19, 83–89 (2017).

    CAS  PubMed  Google Scholar 

  204. Jaslow, C. R., Carney, J. L. & Kutteh, W. H. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil. Steril. 93, 1234–1243 (2010).

    CAS  PubMed  Google Scholar 

  205. Grzeskowiak, L. E. et al. The deleterious effects of cannabis during pregnancy on neonatal outcomes. Med. J. Aust. 212, 519–524 (2020).

    PubMed  Google Scholar 

  206. Cone-Wesson, B. Prenatal alcohol and cocaine exposure: influences on cognition, speech, language, and hearing. J. Commun. Disord. 38, 279–302 (2005).

    PubMed  Google Scholar 

  207. Lund, M. et al. Prognosis for live birth in women with recurrent miscarriage: what is the best measure of success? Obstet. Gynecol. 119, 37–43 (2012). This study was one of the first large-scale prospective cohort studies that documented cumulative live birth rates in women with recurrent pregnancy loss.

    PubMed  Google Scholar 

  208. Koert, E. et al. Recurrent pregnancy loss: couples’ perspectives on their need for treatment, support and follow up. Hum. Reprod. 34, 291–296 (2018).

    Google Scholar 

  209. Kaandorp, S. P. et al. Aspirin plus heparin or aspirin alone in women with recurrent miscarriage. N. Engl. J. Med. 362, 1586–1596 (2010).

    CAS  PubMed  Google Scholar 

  210. Coomarasamy, A. et al. A randomized trial of progesterone in women with recurrent miscarriages. N. Engl. J. Med. 373, 2141–2148 (2015).

    CAS  PubMed  Google Scholar 

  211. Munné, S. et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil. Steril. 112, 1071–1079.e7 (2019).

    PubMed  Google Scholar 

  212. Sato, T. et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum. Reprod. 34, 2340–2348 (2019).

    PubMed  Google Scholar 

  213. Lee, C.-I. et al. Performance of preimplantation genetic testing for aneuploidy in IVF cycles for patients with advanced maternal age, repeat implantation failure, and idiopathic recurrent miscarriage. Taiwan. J. Obstet. Gynecol. 58, 239–243 (2019).

    PubMed  Google Scholar 

  214. Stray-Pedersen, B. & Stray-Pedersen, S. Etiologic factors and subsequent reproductive performance in 195 couples with a prior history of habitual abortion. Am. J. Obstet. Gynecol. 148, 140–146 (1984).

    CAS  PubMed  Google Scholar 

  215. Van den Berg, M. M. J., Vissenberg, R. & Goddijn, M. Recurrent miscarriage clinics. Obstet. Gynecol. Clin. North Am. 41, 145–155 (2014).

    PubMed  Google Scholar 

  216. van den Berg, M. M. J. et al. Patient-centered early pregnancy care: a systematic review of quantitative and qualitative studies on the perspectives of women and their partners. Hum. Reprod. Update 24, 106–118 (2017).

    Google Scholar 

  217. Meaney, S., Corcoran, P., Spillane, N. & Donoghue, K. Experience of miscarriage: an interpretative phenomenological analysis. BMJ Open 7, e011382 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Simmons, R. K., Singh, G., Maconochie, N., Doyle, P. & Green, J. Experience of miscarriage in the UK: qualitative findings from the National Women’s Health Study. Soc. Sci. Med. 63, 1934–1946 (2006).

    PubMed  Google Scholar 

  219. Williams, H. M., Topping, A., Coomarasamy, A. & Jones, L. L. Men and miscarriage: a systematic review and thematic synthesis. Qual. Health Res. 30, 133–145 (2019).

    PubMed  PubMed Central  Google Scholar 

  220. Lu, C., Liu, Y. & Jiang, H. L. Aspirin or heparin or both in the treatment of recurrent spontaneous abortion in women with antiphospholipid antibody syndrome: a meta-analysis of randomized controlled trials. J. Matern. Fetal Neonatal Med. 32, 1299–1311 (2019).

    CAS  PubMed  Google Scholar 

  221. Empson, M. et al. Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochrane Database Syst. Rev. 2, CD002859 (2005).

    Google Scholar 

  222. Girardi, G., Redecha, P. & Salmon, J. E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat. Med. 10, 1222–1226 (2004).

    CAS  PubMed  Google Scholar 

  223. Kutteh, W. H. Antiphospholipid antibody-associated recurrent pregnancy loss: treatment with heparin and low-dose aspirin is superior to low-dose aspirin alone. Am. J. Obstet. Gynecol. 174, 1584–1589 (1996).

    CAS  PubMed  Google Scholar 

  224. Bates, S. M., Middeldorp, S., Rodger, M., James, A. H. & Greer, I. Guidance for the treatment and prevention of obstetric-associated venous thromboembolism. J. Thromb. Thrombolysis 41, 92–128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Radin, R. G. et al. Sex ratio following preconception low-dose aspirin in women with prior pregnancy loss. J. Clin. Invest. 125, 3619–3626 (2015).

    PubMed  PubMed Central  Google Scholar 

  226. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Obsetrics. ACOG Practice Bulletin No. 197: inherited thrombophilias in pregnancy. Obstet. Gynecol. 132, e18–e34 (2018).

    Google Scholar 

  227. World Health Organization. Nutritional Interventions Update: Vitamin D Supplements During Pregnancy (WHO, 2020).

  228. Coomarasamy, A. et al. A randomized trial of progesterone in women with bleeding in early pregnancy. N. Engl. J. Med. 380, 1815–1824 (2019).

    CAS  PubMed  Google Scholar 

  229. Wahabi, H. A., Fayed, A. A., Esmaeil, S. A. & Bahkali, K. H. Progestogen for treating threatened miscarriage. Cochrane Database Syst. Rev. 8, CD005943 (2018).

    PubMed  Google Scholar 

  230. Ku, C. W. et al. Serum progesterone distribution in normal pregnancies compared to pregnancies complicated by threatened miscarriage from 5 to 13 weeks gestation: a prospective cohort study. BMC Pregnancy Childbirth 18, 360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Stephenson, M. D., McQueen, D., Winter, M. & Kliman, H. J. Luteal start vaginal micronized progesterone improves pregnancy success in women with recurrent pregnancy loss. Fertil. Steril. 107, 684–690.e2 (2017).

    CAS  PubMed  Google Scholar 

  232. Akhtar, M. A. et al. Reproductive implications and management of congenital uterine anomalies. BJOG 127, e1–e13 (2020).

    CAS  PubMed  Google Scholar 

  233. Rikken, J. F. et al. Septum resection for women of reproductive age with a septate uterus. Cochrane Database Syst. Rev. 1, CD008576 (2017).

    PubMed  Google Scholar 

  234. Checa, M. A. et al. Hysteroscopic septum resection and reproductive medicine: a SWOT analysis. Reprod. Biomed. Online 37, 709–715 (2018).

    CAS  PubMed  Google Scholar 

  235. Rikken, J. F. W. et al. The randomised uterine septum transsection trial (TRUST): design and protocol. BMC Womens Health 18, 163 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Schwab, I. & Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat. Rev. Immunol. 13, 176–189 (2013).

    CAS  PubMed  Google Scholar 

  237. Egerup, P., Lindschou, J., Gluud, C. Christiansen, O. B. & ImmuReM IPD Study Group. The effects of intravenous immunoglobulins in women with recurrent miscarriages: a systematic review of randomised trials with meta-analyses and trial sequential analyses including individual patient data. PLoS ONE 10, e0141588 (2015).

    PubMed  PubMed Central  Google Scholar 

  238. Stephenson, M. D. et al. Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: a multicentered randomized placebo-controlled trial. Hum. Reprod. 25, 2203–2209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Christiansen, O. B. et al. Intravenous immunoglobulin treatment for secondary recurrent miscarriage: a randomised, double-blind, placebo-controlled trial. BJOG 122, 500–508 (2015).

    CAS  PubMed  Google Scholar 

  240. Cooper, S., Laird, S. M., Mariee, N., Li, T. C. & Metwally, M. The effect of prednisolone on endometrial uterine NK cell concentrations and pregnancy outcome in women with reproductive failure. A retrospective cohort study. J. Reprod. Immunol. 131, 1–6 (2019).

    CAS  PubMed  Google Scholar 

  241. Tang, A. W. et al. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum. Reprod. 28, 1743–1752 (2013).

    CAS  PubMed  Google Scholar 

  242. Cicinelli, E. et al. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF sucess rate after antibiotic therapy. Hum. Reprod. 30, 323–330 (2015).

    PubMed  Google Scholar 

  243. Côté-Arsenault, D., Leerkes, E. M. & Zhou, N. Individual differences in maternal, marital, parenting and child outcomes following perinatal loss: a longitudinal study. J. Reprod. Infant Psychol. 38, 3–15 (2020).

    PubMed  Google Scholar 

  244. He, L. et al. Prevalence of depression and anxiety in women with recurrent pregnancy loss and the associated risk factors. Arch. Gynecol. Obstet. 300, 1061–1066 (2019).

    CAS  PubMed  Google Scholar 

  245. Gao, L., Qu, J. & Wang, A. Y. Anxiety, depression and social support in pregnant women with a history of recurrent miscarriage: a cross-sectional study. J. Reprod. Infant Psychol. 38, 497–518 (2020).

    PubMed  Google Scholar 

  246. Chen, S.-L., Chang, S.-M., Kuo, P.-L. & Chen, C.-H. Stress, anxiety and depression perceived by couples with recurrent miscarriage. Int. J. Nurs. Pract. 26, e12796 (2019).

    PubMed  Google Scholar 

  247. Tavoli, Z. et al. Quality of life and psychological distress in women with recurrent miscarriage: a comparative study. Health Qual. Life Outcomes 16, 150 (2018).

    PubMed  PubMed Central  Google Scholar 

  248. Bailey, S. et al. A feasibility study for a randomised controlled trial of the positive reappraisal coping intervention, a novel supportive technique for recurrent miscarriage. BMJ Open 5, e007322 (2015).

    PubMed  PubMed Central  Google Scholar 

  249. Gold, K. J., Sen, A. & Hayward, R. A. Marriage and cohabitation outcomes after pregnancy loss. Pediatrics 125, e1202–e1207 (2010).

    PubMed  Google Scholar 

  250. Sugiura-Ogasawara, M. et al. Frequency of recurrent spontaneous abortion and its influence on further marital relationship and illness: the Okazaki Cohort Study in Japan. J. Obstet. Gynaecol. Res. 39, 126–131 (2013).

    PubMed  Google Scholar 

  251. Kling, C., Magez, J., Hedderich, J., von Otte, S. & Kabelitz, D. Two-year outcome after recurrent first trimester miscarriages: prognostic value of the past obstetric history. Arch. Gynecol. Obstet. 293, 1113–1123 (2016).

    PubMed  PubMed Central  Google Scholar 

  252. Lindquist, A. C., Kurinczuk, J. J., Wallace, E. M., Oats, J. & Knight, M. Risk factors for maternal morbidity in Victoria, Australia: a population-based study. BMJ Open 5, e007903 (2015).

    PubMed  PubMed Central  Google Scholar 

  253. Cozzolino, M., Rizzello, F., Riviello, C., Romanelli, C. & Coccia Elisabetta, M. Ongoing pregnancies in patients with unexplained recurrent pregnancy loss: adverse obstetric outcomes. Hum. Fertil. 22, 219–225 (2019).

    CAS  Google Scholar 

  254. Charach, R., Sheiner, E., Beharier, O., Sergienko, R. & Kessous, R. Recurrent pregnancy loss and future risk of female malignancies. Arch. Gynecol. Obstet. 298, 781–787 (2018).

    PubMed  Google Scholar 

  255. Lekea-Karanika, V. & Tzoumaka-Bakoula, C. Past obstetric history of the mother and its association with low birthweight of a subsequent child: a population based study. Paediatric Perinat. Epidemiol. 8, 173–187 (1994).

    CAS  Google Scholar 

  256. Field, K. & Murphy, D. J. Perinatal outcomes in a subsequent pregnancy among women who have experienced recurrent miscarriage: a retrospective cohort study. Hum. Reprod. 30, 1239–1245 (2015).

    CAS  PubMed  Google Scholar 

  257. Kessous, R. et al. Recurrent pregnancy loss: a risk factor for long-term maternal atherosclerotic morbidity? Am. J. Obstet. Gynecol. 211, 414.e1–414.e11 (2014).

    Google Scholar 

  258. Oliver-Williams, C. T., Heydon, E. E., Smith, G. C. S. & Wood, A. M. Miscarriage and future maternal cardiovascular disease: a systematic review and meta-analysis. Heart 99, 1636–1644 (2013).

    PubMed  Google Scholar 

  259. Parker, D. R. et al. Risk of cardiovascular disease among postmenopausal women with prior pregnancy loss: the Women’s Health Initiative. Ann. Family Med. 12, 302–309 (2014).

    Google Scholar 

  260. Wagner, M. M., Bhattacharya, S., Visser, J., Hannaford, P. C. & Bloemenkamp, K. W. Association between miscarriage and cardiovascular disease in a Scottish cohort. Heart 101, 1954–1960 (2015).

    PubMed  Google Scholar 

  261. Wu, P., Mamas, M. A. & Gulati, M. Pregnancy as a predictor of maternal cardiovascular disease: the era of cardioobstetrics. J. Women’s Health 28, 1037–1050 (2019).

    Google Scholar 

  262. Schwarzman, P. et al. Maternal history of recurrent pregnancy loss and long-term risk of thromboembolic events. J. Reprod. Immunol. 138, 103084 (2020).

    PubMed  Google Scholar 

  263. Sugiura-Ogasawara, M. et al. Endometriosis and recurrent pregnancy loss as new risk factors for venous thromboembolism during pregnancy and post-partum: the JECS Birth Cohort. Thombosis Haemost. 119, 606–617 (2019).

    Google Scholar 

  264. Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Turco, M. Y. et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564, 263–267 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

    CAS  PubMed  Google Scholar 

  267. Salamonsen, L. A., Hannan, N. J. & Dimitriadis, E. Cytokines and chemokines during human embryo implantation: roles in implantation and early placentation. Semin. Reprod. Med. 25, 437–444 (2007).

    CAS  PubMed  Google Scholar 

  268. Kolte, A. M. et al. Terminology for pregnancy loss prior to viability: a consensus statement from the ESHRE Early Pregnancy Special Interest Group. Hum. Reprod. 30, 495–498 (2015).

    CAS  PubMed  Google Scholar 

  269. American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Management of stillbirth, obstetric care consensus no, 10. Obstet. Gynecol. 135, e110–e132 (2020).

    Google Scholar 

  270. Kolte, A. M. et al. Non-visualized pregnancy losses are prognostically important for unexplained recurrent miscarriage. Hum. Reprod. 29, 931–937 (2014).

    CAS  PubMed  Google Scholar 

  271. Ford, H. B. & Schust, D. J. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev. Obstet. Gynecol. 2, 76–83 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.D. was supported by a senior research fellowship from National Health and Medical Research of Australia (NHMRC) and E.D. and E.M. by a NHMRC research project grant. S.S. was supported by AMED under grant numbers JP18gk0110018h0003 and JP20gk0110047h0002. J.J.B. was supported by funds from the Tommy’s National Miscarriage Research Centre and a Wellcome Trust Investigator Award (212233/Z/18/Z).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.D., E.M., S.S. and J.J.B.); Epidemiology (E.D. and J.J.B.); Mechanisms/pathophysiology (E.D., E.M., S.S., W.H.K. and J.J.B.); Diagnosis, screening and prevention (E.D. and W.H.K.); Management (E.D., E.M., S.S. and J.J.B.); Quality of life (E.D., E.M. and J.J.B.); Outlook (E.D., E.M., S.S. and J.J.B.); Overview of Primer (E.D.). E.D. and E.M. contributed equally to this Primer.

Corresponding author

Correspondence to Evdokia Dimitriadis.

Ethics declarations

Competing interests

J.J.B. has filed a UKIPO patent application (no. 1911947.8) pertaining to the use of SCARA5 and DIO2 as endometrial biomarkers to assess the risk of miscarriage. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks N. Di Simone, N. Gleicher, J. Gris, D. Gupta and M. Van Wely for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Clinically recognized pregnancies

Pregnancies confirmed by ultrasonography or histopathology.

Ectopic pregnancies

When embryos implant outside the uterine cavity.

Molar pregnancies

A pregnancy characterized by excessive placental growth caused by an abnormally fertilized egg.

Biochemical losses

Non-visualized pregnancy losses documented only by a positive pregnancy test (serum or urine human chorionic gonadotrophin).

Secondary recurrent pregnancy loss

At least one previous live birth or pregnancy beyond 20–24 weeks of gestation.

Primary recurrent pregnancy loss

No prior live births or pregnancies beyond 20–24 weeks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriadis, E., Menkhorst, E., Saito, S. et al. Recurrent pregnancy loss. Nat Rev Dis Primers 6, 98 (2020). https://doi.org/10.1038/s41572-020-00228-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-00228-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing