Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exercise mimetics: harnessing the therapeutic effects of physical activity

Abstract

Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exercise as the ultimate whole-body therapeutic.
Fig. 2: Molecular pathways and signalling systems implicated in the therapeutic effects of physical exercise on brain function and cognitive enhancement.
Fig. 3: A roadmap for the development of exercise mimetics.

Similar content being viewed by others

References

  1. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Febbraio, M. A. Health benefits of exercise — more than meets the eye! Nat. Rev. Endocrinol. 13, 72–74 (2017).

    Article  PubMed  Google Scholar 

  3. Gleeson, M. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11, 607–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. McTiernan, A. Mechanisms linking physical activity with cancer. Nat. Rev. Cancer 8, 205–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Hillman, C. H., Erickson, K. I. & Kramer, A. F. Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, N., Liu, Y., Ma, Y. & Wen, D. High-intensity interval versus moderate-intensity continuous training: superior metabolic benefits in diet-induced obesity mice. Life Sci. 191, 122–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Bacurau, A. V. N. et al. Effect of a high-intensity exercise training on the metabolism and function of macrophages and lymphocytes of Walker 256 tumor–bearing rats. Exp. Biol. Med. 232, 1289–1299 (2007).

    Article  CAS  Google Scholar 

  8. Hagar, A. et al. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer 19, 536 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carey, A. L. & Kingwell, B. A. Novel pharmacological approaches to combat obesity and insulin resistance: targeting skeletal muscle with ‘exercise mimetics’. Diabetologia 52, 2015–2026 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Fan, W. & Evans, R. M. Exercise mimetics: impact on health and performance. Cell Metab. 25, 242–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Fan, W., Atkins, A. R., Yu, R. T., Downes, M. & Evans, R. M. Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. J. Mol. Endocrinol. 51, T87–T100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wall, C. E., Yu, R. T., Atkins, A. R., Downes, M. & Evans, R. M. Nuclear receptors and AMPK: can exercise mimetics cure diabetes? J. Mol. Endocrinol. 57, R49–R58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alkadhi, K. A. Exercise as a positive modulator of brain function. Mol. Neurobiol. 55, 3112–3130 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. McDonnell, M. N., Smith, A. E. & Mackintosh, S. F. Aerobic exercise to improve cognitive function in adults with neurological disorders: a systematic review. Arch. Phys. Med. Rehabil. 92, 1044–1052 (2011).

    Article  PubMed  Google Scholar 

  17. Ströhle, A. et al. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: a systematic review and meta-analysis of effects on cognition in randomized controlled trials. Am. J. Geriatr. Psychiatry 23, 1234–1249 (2015).

    Article  PubMed  Google Scholar 

  18. Cammisuli, I. A. & Fusi, J. Aerobic exercise effects upon cognition in Alzheimer’s disease: a systematic review of randomized controlled trials. Arch. Ital. Biol. 156, 54–63 (2018).

    CAS  PubMed  Google Scholar 

  19. Farina, N., Rusted, J. & Tabet, N. The effect of exercise interventions on cognitive outcome in Alzheimer’s disease: a systematic review. Int. Psychogeriatr. 26, 9–18 (2014).

    Article  PubMed  Google Scholar 

  20. Li, X., Guo, R., Wei, Z., Jia, J. & Wei, C. Effectiveness of exercise programs on patients with dementia: a systematic review and meta-analysis of randomized controlled trials. BioMed. Res. Int. 2019, 1–16 (2019).

    Google Scholar 

  21. Uhrbrand, A., Stenager, E., Pedersen, M. S. & Dalgas, U. Parkinson’s disease and intensive exercise therapy – a systematic review and meta-analysis of randomized controlled trials. J. Neurol. Sci. 353, 9–19 (2015).

    Article  PubMed  Google Scholar 

  22. Shu, H.-F. et al. Aerobic exercise for Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9, e100503 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cruickshank, T. M., Reyes, A. R. & Ziman, M. R. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine 94, e411 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo, L. et al. Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: a systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 63, 59–68 (2020).

    Article  PubMed  Google Scholar 

  25. Vanderbeken, I. & Kerckhofs, E. A systematic review of the effect of physical exercise on cognition in stroke and traumatic brain injury patients. NeuroRehabilitation 40, 33–48 (2017).

    Article  PubMed  Google Scholar 

  26. Hung, S. H. et al. Pre-stroke physical activity and admission stroke severity: a systematic review. Int. J. Stroke https://doi.org/10.1177/1747493021995271 (2021).

    Article  PubMed  Google Scholar 

  27. Meng, L. et al. Effects of exercise in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. 99, 801–810 (2020).

    Article  PubMed  Google Scholar 

  28. Álvarez-Bueno, C. et al. The effect of physical activity interventions on children’s cognition and metacognition: a systematic review and meta-analysis. J. Am. Acad. Child. Adolesc. Psychiatry 56, 729–738 (2017).

    Article  PubMed  Google Scholar 

  29. Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J. & Rattray, B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52, 154–160 (2018).

    Article  PubMed  Google Scholar 

  30. Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S. & Liu-Ambrose, T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocrinol. 46, 71–85 (2017).

    Article  PubMed  Google Scholar 

  31. Firth, J. et al. Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr. Bull. 43, 546–556 (2017).

    PubMed  Google Scholar 

  32. Firth, J., Cotter, J., Elliott, R., French, P. & Yung, A. R. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol. Med. 45, 1343–1361 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Dauwan, M., Begemann, M. J. H., Heringa, S. M. & Sommer, I. E. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr. Bull. 42, 588–599 (2016).

    Article  PubMed  Google Scholar 

  34. Neufer, P. D. et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 22, 4–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. De Vincenti, A. P., Ríos, A. S., Paratcha, G. & Ledda, F. Mechanisms that modulate and diversify BDNF functions: implications for hippocampal synaptic plasticity. Front. Cell. Neurosci. 13, 135 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim, S. et al. Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflügers Arch. Eur. J. Physiol. 471, 491–505 (2019).

    Article  CAS  Google Scholar 

  38. McGee, S. L. & Walder, K. R. Exercise and the skeletal muscle epigenome. Cold Spring Harb. Perspect. Med. 7, a029876 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McOmish, C. E. & Hannan, A. J. Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opin. Ther. Targets 11, 899–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Boa, B. C. S., Yudkin, J. S., van Hinsbergh, V. W. M., Bouskela, E. & Eringa, E. C. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function: exercise, adipose tissue and vascular function. Br. J. Pharmacol. 174, 3466–3481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases — myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz-Casado, A. et al. Exercise and the hallmarks of cancer. Trends Cancer 3, 423–441 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Dethlefsen, C., Pedersen, K. S. & Hojman, P. Every exercise bout matters: linking systemic exercise responses to breast cancer control. Breast Cancer Res. Treat. 162, 399–408 (2017).

    Article  PubMed  Google Scholar 

  45. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription (Wolters Kluwer, 2017).

    Google Scholar 

  46. Fletcher, G. F. et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104, 1694–1740 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Piercy, K. L. et al. The physical activity guidelines for Americans. JAMA 320, 2020 (2018).

    Article  PubMed  Google Scholar 

  48. Sarzynski, M. A., Ghosh, S. & Bouchard, C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J. Physiol. 595, 2931–2939 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman, N. J. Omics and exercise: global approaches for mapping exercise biological networks. Cold Spring Harb. Perspect. Med. 7, a029884 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Al-Khelaifi, F. et al. Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Sci. Rep. 9, 19889 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bouchard, C., Rankinen, T. & Timmons, J. A. Genomics and genetics in the biology of adaptation to exercise. Compr. Physiol. 1, 1603–1648 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Patel, H. et al. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J. Cardiol. 9, 134–138 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Guerrieri, D., Moon, H. Y. & van Praag, H. Exercise in a pill: the latest on exercise-mimetics. Brain Plasticity 2, 153–169 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hunter, P. Exercise in a bottle: elucidating how exercise conveys health benefits might lead to new therapeutic options for a range of diseases from cancer to metabolic syndrome. EMBO Rep. 17, 136–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Catoire, M. & Kersten, S. The search for exercise factors in humans. FASEB J. 29, 1615–1628 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tari, A. R. et al. Are the neuroprotective effects of exercise training systemically mediated? Prog. Cardiovascular Dis. 62, 94–101 (2019).

    Article  Google Scholar 

  59. Delezie, J. & Handschin, C. Endocrine crosstalk between skeletal muscle and the brain. Front. Neurol. 9, 698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lucassen, P. J., Fitzsimons, C. P., Salta, E. & Maletic-Savatic, M. Adult neurogenesis, human after all (again): classic, optimized, and future approaches. Behav. Brain Res. 381, 112458 (2020).

    Article  PubMed  Google Scholar 

  61. Rendeiro, C. & Rhodes, J. S. A new perspective of the hippocampus in the origin of exercise–brain interactions. Brain Struct. Funct. 223, 2527–2545 (2018).

    Article  PubMed  Google Scholar 

  62. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Malvaut, S. & Saghatelyan, A. The role of adult-born neurons in the constantly changing olfactory bulb network. Neural Plasticity 2016, 1–8 (2016).

    Article  CAS  Google Scholar 

  64. Sakamoto, M., Kageyama, R. & Imayoshi, I. The functional significance of newly born neurons integrated into olfactory bulb circuits. Front. Neurosci. 8, 121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bicker, F. et al. Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception. Nat. Commun. 8, 15922 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bédard, A. & Parent, A. Evidence of newly generated neurons in the human olfactory bulb. Dev. Brain Res. 151, 159–168 (2004).

    Article  CAS  Google Scholar 

  67. Oomen, C. A., Bekinschtein, P., Kent, B. A., Saksida, L. M. & Bussey, T. J. Adult hippocampal neurogenesis and its role in cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 573–587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bonzano, S., Bovetti, S., Gendusa, C., Peretto, P. & De Marchis, S. Adult born olfactory bulb dopaminergic interneurons: molecular determinants and experience-dependent plasticity. Front. Neurosci. 10, 189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sun, W., Kim, H. & Moon, Y. Control of neuronal migration through rostral migration stream in mice. Anat. Cell Biol. 43, 269 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Toda, T., Parylak, S. L., Linker, S. B. & Gage, F. H. The role of adult hippocampal neurogenesis in brain health and disease. Mol. Psychiatry 24, 67–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Xiong, Y., Mahmood, A. & Chopp, M. Emerging treatments for traumatic brain injury. Expert Opin. Emerg. Drugs 14, 67–84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vivar, C., Potter, M. C. & van Praag, H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr. Top. Behav. Neurosci. 15, 189–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. El-Sayes, J., Harasym, D., Turco, C. V., Locke, M. B. & Nelson, A. J. Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. Neuroscientist 25, 65–85 (2019).

    Article  PubMed  Google Scholar 

  74. Parrini, M. et al. Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Sci. Rep. 7, 16825 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Anacker, C. & Hen, R. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nat. Rev. Neurosci. 18, 335–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernandes, J., Arida, R. M. & Gomez-Pinilla, F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci. Biobehav. Rev. 80, 443–456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reichmann, F. et al. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice. Sci. Rep. 6, 28182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dremencov, E. et al. Effect of physical exercise and acute escitalopram on the excitability of brain monoamine neurons: in vivo electrophysiological study in rats. Int. J. Neuropsychopharmacol. 20, 585–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Graff, R. M. et al. β2-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav. Immun. 74, 143–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Garcia, P. C., Real, C. C. & Britto, L. R. The impact of short and long-term exercise on the expression of Arc and AMPARs during evolution of the 6-hydroxy-dopamine animal model of Parkinson’s disease. J. Mol. Neurosci. 61, 542–552 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Nauer, R. K., Dunne, M. F., Stern, C. E., Storer, T. W. & Schon, K. Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults. Hippocampus 30, 488–504 (2020).

    Article  PubMed  Google Scholar 

  82. van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999).

    Article  PubMed  Google Scholar 

  83. Farmer, J. et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590 (2004).

    Article  PubMed  Google Scholar 

  85. Saraulli, D., Costanzi, M., Mastrorilli, V. & Farioli-Vecchioli, S. The long run: neuroprotective effects of physical exercise on adult neurogenesis from youth to old age. Curr. Neuropharmacol. 15, 519–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Islam, M. R. et al. Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice. Brain Plasticity 5, 147–159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Codd, L. N., Blackmore, D. G., Vukovic, J. & Bartlett, P. F. Exercise reverses learning deficits induced by hippocampal injury by promoting neurogenesis. Sci. Rep. 10, 19269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tapia-Arancibia, L., Aliaga, E., Silhol, M. & Arancibia, S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res. Rev. 59, 201–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Neeper, S. A., Gómez-Pinilla, F., Choi, J. & Cotman, C. W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Bekinschtein, P., Oomen, C. A., Saksida, L. M. & Bussey, T. J. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol. 22, 536–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, R. & Holsinger, R. M. D. Exercise-induced brain-derived neurotrophic factor expression: therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 48, 109–121 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Pang, T. Y. C., Stam, N. C., Nithianantharajah, J., Howard, M. L. & Hannan, A. J. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience 141, 569–584 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Phillips, C., Baktir, M. A., Srivatsan, M. & Salehi, A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front. Cell. Neurosci. 8, 170 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Squinto, S. P. et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 65, 885–893 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kowiański, P. et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol. Neurobiol. 38, 579–593 (2018).

    Article  PubMed  CAS  Google Scholar 

  98. Egan, M. F. et al. The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Ieraci, A., Madaio, A. I., Mallei, A., Lee, F. S. & Popoli, M. Brain-derived neurotrophic factor Val66Met human polymorphism impairs the beneficial exercise-induced neurobiological changes in mice. Neuropsychopharmacology 41, 3070–3079 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Seo, J.-H. et al. Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder. Exp. Neurol. 322, 113043 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Park, S.-S., Park, H.-S., Kim, C.-J., Baek, S.-S. & Kim, T.-W. Exercise attenuates maternal separation-induced mood disorder-like behaviors by enhancing mitochondrial functions and neuroplasticity in the dorsal raphe. Behav. Brain Res. 372, 112049 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Venezia, A. C., Guth, L. M., Sapp, R. M., Spangenburg, E. E. & Roth, S. M. Sex-dependent and independent effects of long-term voluntary wheel running on Bdnf mRNA and protein expression. Physiol. Behav. 156, 8–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Walsh, J. J. & Tschakovsky, M. E. Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions. Appl. Physiol. Nutr. Metab. 43, 1095–1104 (2018).

    Article  PubMed  Google Scholar 

  104. Mattson, M. P. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci. 1144, 97–112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng, F., Zhou, X., Moon, C. & Wang, H. Regulation of brain-derived neurotrophic factor expression in neurons. Int. J. Physiol. Pathophysiol. Pharmacol. 4, 188–200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi, K., Liu, X., Hou, L., Qiao, D. & Lin, X. Effects of exercise on mGluR-mediated glutamatergic transmission in the striatum of hemiparkinsonian rats. Neurosci. Lett. 705, 143–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Alenina, N. & Klempin, F. The role of serotonin in adult hippocampal neurogenesis. Behav. Brain Res. 277, 49–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Klempin, F. et al. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 33, 8270–8275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gutknecht, L. et al. Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J. Neural Transm. 115, 1127–1132 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, D. D., Barr, A. M., Honer, W. G. & Procyshyn, R. M. Exercise-induced hippocampal neurogenesis: 5-HT3 receptor antagonism by antipsychotics as a potential limiting factor in schizophrenia. Mol. Psychiatry 23, 2252–2253 (2018).

    Article  PubMed  Google Scholar 

  111. Kondo, M., Nakamura, Y., Ishida, Y. & Shimada, S. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Mol. Psychiatry 10, 1428–1437 (2014).

    Google Scholar 

  112. Rogers, J. et al. Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene. Br. J. Pharmacol. 176, 3279–3296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Jensen, E. W., Espersen, K., Kanstrup, I. L. & Christensen, N. J. Exercise-induced changes in plasma catecholamines and neuropeptide Y: relation to age and sampling times. J. Appl. Physiol. 76, 1269–1273 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Rämson, R., Jürimäe, J., Jürimäe, T. & Mäestu, J. The effect of 4-week training period on plasma neuropeptide Y, leptin and ghrelin responses in male rowers. Eur. J. Appl. Physiol. 112, 1873–1880 (2012).

    Article  PubMed  CAS  Google Scholar 

  115. Chen, J.-X., Zhao, X., Yue, G.-X. & Wang, Z.-F. Influence of acute and chronic treadmill exercise on rat plasma lactate and brain NPY, L-ENK, DYN A1–13. Cell. Mol. Neurobiol. 27, 1–10 (2007).

    Article  PubMed  CAS  Google Scholar 

  116. Joksimovic, J. et al. The role of neuropeptide-Y in nandrolone decanoate-induced attenuation of antidepressant effect of exercise. PLoS ONE 12, e0178922 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Watson, C. N., Belli, A. & Di Pietro, V. Small non-coding RNAs: new class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet. 10, 364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lennox, K. A. & Behlke, M. A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18, 1111–1120 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Mattes, J., Yang, M. & Foster, P. S. Regulation of microrna by antagomirs: a new class of pharmacological antagonists for the specific regulation of gene function? Am. J. Respir. Cell Mol. Biol. 36, 8–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Ling, H., Fabbri, M. & Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12, 847–865 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gomes, C. P. C. et al. Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system. Clin. Sci. 132, 925–942 (2018).

    Article  CAS  Google Scholar 

  123. Silva, F. Cda et al. Effects of physical exercise on the expression of microRNAs: a systematic review. J. Strength. Cond. Res. 34, 270–280 (2020).

    Article  PubMed  Google Scholar 

  124. Bonilauri, B. & Dallagiovanna, B. Long non-coding RNAs are differentially expressed after different exercise training programs. Front. Physiol. 11, 567614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Ling, H. in Non-Coding RNAs in Colorectal Cancer (eds Slaby O. & Calin, G. A.) 229–237 (Springer, 2016).

  127. Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, T., Kim, Y. & MacLeod, A. R. in Long Non-Coding RNAs (eds Feng, Y. & Zhang, L.) 199–213 (Springer, 2016).

  129. Fernandes, J. et al. Hippocampal microRNA-mRNA regulatory network is affected by physical exercise. Biochim. Biophys. Acta Gen. Subj. 1862, 1711–1720 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Pons-Espinal, M. et al. MiR-135a-5p is critical for exercise-induced adult neurogenesis. Stem Cell Rep. 12, 1298–1312 (2019).

    Article  CAS  Google Scholar 

  131. Improta-Caria, A. C. et al. Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int. J. Mol. Sci. 21, 4977 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  132. Bao, T. et al. Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury. J. Mol. Neurosci. 54, 622–629 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Miao, W. et al. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. Braz. J. Med. Biol. Res. 48, 433–439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hu, T. et al. miR21 is associated with the cognitive improvement following voluntary running wheel exercise in TBI mice. J. Mol. Neurosci. 57, 114–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Dharap, A., Pokrzywa, C. & Vemuganti, R. Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 5, AN20130029 (2013).

    Article  CAS  Google Scholar 

  136. Shang, J., Cheng, Q., Duan, S., Li, L. & Jia, L. Cognitive improvement following ischemia/reperfusion injury induced by voluntary running‑wheel exercise is associated with LncMALAT1‑mediated apoptosis inhibition. Int. J. Mol. Med. 41, 2715–2723 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Widmann, M., Nieß, A. M. & Munz, B. Physical exercise and epigenetic modifications in skeletal muscle. Sports Med. 49, 509–523 (2019).

    Article  PubMed  Google Scholar 

  138. McGowan, P. O. & Roth, T. L. Epigenetic pathways through which experiences become linked with biology. Dev. Psychopathol. 27, 637–648 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Urbano, A., Smith, J., Weeks, R. J. & Chatterjee, A. Gene-specific targeting of DNA methylation in the mammalian genome. Cancers 11, 1515 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  140. Park, S.-Y. & Kim, J.-S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 52, 204–212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C. & Berdasco, M. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenet. 11, 174 (2019).

    Article  CAS  Google Scholar 

  142. Ieraci, A., Mallei, A., Musazzi, L. & Popoli, M. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice: epigenetic modulation of Bdnf exons by exercise and stress. Hippocampus 25, 1380–1392 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, M. J. & Russo-Neustadt, A. A. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus 19, 962–972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, M. J. & Russo-Neustadt, A. A. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors 25, 118–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Müller, P., Duderstadt, Y., Lessmann, V. & Müller, N. G. Lactate and BDNF: key mediators of exercise induced neuroplasticity? J. Clin. Med. 9, 1136 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  146. Cechinel, L. R. et al. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats. Behav. Brain Res. 313, 82–87 (2016).

    Article  PubMed  Google Scholar 

  147. Segabinazi, E. et al. Effects of maternal physical exercise on global DNA methylation and hippocampal plasticity of rat male offspring. Neuroscience 418, 218–230 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Goli, P., Yazdi, M., Poursafa, P. & Kelishadi, R. Intergenerational influence of paternal physical activity on the offspring’s brain: a systematic review and meta-analysis. Int. J. Devel. Neurosci. https://doi.org/10.1002/jdn.10081 (2020).

    Article  Google Scholar 

  149. Denham, J., O’Brien, B. J., Harvey, J. T. & Charchar, F. J. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics 7, 717–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Nystoriak, M. A. & Bhatnagar, A. Cardiovascular effects and benefits of exercise. Front. Cardiovasc. Med. 5, 135 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ho, Q. T. & Kuo, C. J. Vascular endothelial growth factor: biology and therapeutic applications. Int. J. Biochem. Cell Biol. 39, 1349–1357 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fabel, K. et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812 (2003).

    Article  PubMed  Google Scholar 

  153. Kiuchi, T., Lee, H. & Mikami, T. Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207, 208–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Pianta, S. et al. A short bout of exercise prior to stroke improves functional outcomes by enhancing angiogenesis. NeuroMolecular Med. 21, 517–528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rezaei, R. et al. High intensity exercise preconditioning provides differential protection against brain injury following experimental stroke. Life Sci. 207, 30–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Pang, Q. et al. Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats. Brain Res. 1663, 9–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Zhao, Y. et al. Treadmill exercise promotes neurogenesis in ischemic rat brains via caveolin-1/VEGF signaling pathways. Neurochem. Res. 42, 389–397 (2017).

    Article  PubMed  CAS  Google Scholar 

  158. Gao, Y. et al. Treadmill exercise promotes angiogenesis in the ischemic penumbra of rat brains through caveolin-1/VEGF signaling pathways. Brain Res. 1585, 83–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Hawley, J. A., Joyner, M. J. & Green, D. J. Mimicking exercise: what matters most and where to next? J. Physiol. 599, 791–802 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Kobilo, T., Yuan, C. & van Praag, H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn. Mem. 18, 103–107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kobilo, T. et al. AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learn. Mem. 21, 119–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lauritzen, H. P. M. M. et al. Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes 62, 3081–3092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Marangos, P. J. et al. Adenosinergic modulation of homocysteine-induced seizures in mice. Epilepsia 31, 239–246 (1990).

    Article  CAS  PubMed  Google Scholar 

  165. Suwa, M., Nakano, H., Radak, Z. & Kumagai, S. Short-term adenosine monophosphate–activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside treatment increases the sirtuin 1 protein expression in skeletal muscle. Metabolism 60, 394–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, J. et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11, 23–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, Y., Tang, G., Zhang, Z., Wang, Y. & Yang, G.-Y. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci. Lett. 579, 46–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. DiTacchio, K. A., Heinemann, S. F. & Dziewczapolski, G. Metformin treatment alters memory function in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 44, 43–48 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hervás, D. et al. Metformin intake associates with better cognitive function in patients with Huntington’s disease. PLoS ONE 12, e0179283 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Moore, E. M. et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36, 2981–2987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Imfeld, P., Bodmer, M., Jick, S. S. & Meier, C. R. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J. Am. Geriatrics Soc. 60, 916–921 (2012).

    Article  Google Scholar 

  172. Deschemin, J.-C., Foretz, M., Viollet, B. & Vaulont, S. AMPK is not required for the effect of metformin on the inhibition of BMP6-induced hepcidin gene expression in hepatocytes. Sci. Rep. 7, 12679 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Pedersen, B. K. The diseasome of physical inactivity - and the role of myokines in muscle-fat cross talk. J. Physiol. 587, 5559–5568 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pedersen, B. K. Exercise-induced myokines and their role in chronic diseases. Brain Behav. Immun. 25, 811–816 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Pedersen, B. K. Physical activity and muscle–brain crosstalk. Nat. Rev. Endocrinol. 15, 383–392 (2019).

    Article  PubMed  Google Scholar 

  178. Murphy, R. M., Watt, M. J. & Febbraio, M. A. Metabolic communication during exercise. Nat. Metab. 2, 805–816 (2020).

    Article  PubMed  Google Scholar 

  179. Rai, M. & Demontis, F. Systemic nutrient and stress signaling via myokines and myometabolites. Annu. Rev. Physiol. 78, 85–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Giudice, J. & Taylor, J. M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 34, 49–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pedersen, B. K. & Febbraio, M. Muscle-derived interleukin-6—a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav. Immun. 19, 371–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Rao, R. R. et al. Meteorin-like Is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Barlow, J. P. et al. Beta-aminoisobutyric acid is released by contracting human skeletal muscle and lowers insulin release from INS-1 832/3 cells by mediating mitochondrial energy metabolism. Metab. Open 7, 100053 (2020).

    Article  Google Scholar 

  184. Severinsen, M. C. K. & Pedersen, B. K. Muscle–organ crosstalk: the emerging roles of myokines. Endocr. Rev. 41, 594–609 (2020).

    Article  PubMed Central  Google Scholar 

  185. Akira, S., Taga, T. & Kishimoto, T. Interleukin-6 in biology and medicine. Adv. Immunol. 54, 1–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  186. Storer, M. A. et al. Interleukin-6 regulates adult neural stem cell numbers during normal and abnormal post-natal development. Stem Cell Rep. 10, 1464–1480 (2018).

    Article  CAS  Google Scholar 

  187. Bowen, K. K., Dempsey, R. J. & Vemuganti, R. Adult interleukin-6 knockout mice show compromisedneurogenesis. NeuroReport 22, 126–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Vallières, L., Campbell, I. L., Gage, F. H. & Sawchenko, P. E. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Señarís, R. M. et al. Interleukin-6 regulates the expression of hypothalamic neuropeptides involved in body weight in a gender-dependent way: IL-6 and hypothalamic neuropeptides. J. Neuroendocrinol. 23, 675–686 (2011).

    Article  PubMed  CAS  Google Scholar 

  190. Agudelo, L. Z. et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159, 33–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Jager, S., Handschin, C., St.-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Roy, T. & Lloyd, C. E. Epidemiology of depression and diabetes: a systematic review. J. Affect. Disord. 142, S8–S21 (2012).

    Article  PubMed  Google Scholar 

  193. Berg, U. & Bang, P. Exercise and circulating insulin-like growth factor I. Horm. Res. Paediatrics 62, 50–58 (2004).

    Article  CAS  Google Scholar 

  194. Nakajima, S., Ohsawa, I., Ohta, S., Ohno, M. & Mikami, T. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice. Behav. Brain Res. 211, 178–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Carro, E., Nuñez, A., Busiguina, S. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. & Gomez-Pinilla, F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823–833 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Ferris, L. T., Williams, J. S. & Shen, C.-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 39, 728–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Schiffer, T. et al. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci. Lett. 488, 234–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. El Hayek, L. et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 39, 2369–2382 (2019).

    PubMed  PubMed Central  Google Scholar 

  200. Margineanu, M. B., Mahmood, H., Fiumelli, H. & Magistretti, P. J. L-Lactate regulates the expression of synaptic plasticity and neuroprotection genes in cortical neurons: a transcriptome analysis. Front. Mol. Neurosci. 11, 375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Erickson, H. P. Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2, 289–293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wrann, C. D. FNDC5/Irisin – their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plasticity 1, 55–61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Schnyder, S. & Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 80, 115–125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jin, Y. et al. Molecular and functional interaction of the myokine irisin with physical exercise and Alzheimer’s disease. Molecules 23, 3229 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  205. Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu, Y., Zhu, C., Guo, J., Chen, Y. & Meng, C. The neuroprotective effect of irisin in ischemic stroke. Front. Aging Neurosci. 12, 588958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hofmann, T. et al. The exercise-induced myokine irisin does not show an association with depressiveness, anxiety and perceived stress in obese women. J. Physiol. Pharmacol. 67, 195–203 (2016).

    CAS  PubMed  Google Scholar 

  208. Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Iizuka, K., Machida, T. & Hirafuji, M. Skeletal muscle is an endocrine organ. J. Pharmacol. Sci. 125, 125–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Clow, C. & Jasmin, B. J. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol. Biol. Cell 21, 2182–2190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Matthews, V. B. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Rasmussen, P. et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise: Brain-derived neurotrophic factor release during exercise. Exp. Physiol. 94, 1062–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Wang, B., Yao, M., Lv, L., Ling, Z. & Li, L. The human microbiota in health and disease. Engineering 3, 71–82 (2017).

    Article  Google Scholar 

  214. Weinstock, G. M. Genomic approaches to studying the human microbiota. Nature 489, 250–256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Article  PubMed  Google Scholar 

  216. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Scotti, E. et al. Exploring the microbiome in health and disease: Implications for toxicology. Toxicol. Res. Appl. 1, 239784731774188 (2017).

    Google Scholar 

  218. Cerdá, B. et al. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front. Physiol. 7, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Gubert, C., Kong, G., Renoir, T. & Hannan, A. J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis. 134, 104621 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Dalton, A., Mermier, C. & Zuhl, M. Exercise influence on the microbiome–gut–brain axis. Gut Microbes 10, 555–568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Cronin, O. et al. Gut microbiota: implications for sports and exercise medicine. Br. J. Sports Med. 51, 700–701 (2017).

    Article  PubMed  Google Scholar 

  222. Monda, V. et al. Exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev. 2017, 1–8 (2017).

    Article  CAS  Google Scholar 

  223. Mitchell, C. M. et al. Does exercise alter gut microbial composition? — a systematic review. Med. Sci. Sports Exerc. 51, 160–167 (2019).

    Article  PubMed  Google Scholar 

  224. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    Article  PubMed  Google Scholar 

  225. Allen, J. M. et al. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9, 115–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Batacan, R. B. et al. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. J. Appl. Microbiol. 122, 1627–1638 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Campbell, S. C. et al. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS ONE 11, e0150502 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kang, S. S. et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol. Neurodegener. 9, 36 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Feng, X. et al. Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut microbiome in a rat model of metabolic syndrome. Front. Immunol. 8, 1768 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Abraham, D. et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol. 115, 122–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Denham, J. & Spencer, S. J. Emerging roles of extracellular vesicles in the intercellular communication for exercise-induced adaptations. Am. J. Physiol. Endocrinol. Metab. 319, E320–E329 (2020).

    Article  PubMed  CAS  Google Scholar 

  233. Safdar, A. & Tarnopolsky, M. A. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb. Perspect. Med. 8, a029827 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Veziroglu, E. M. & Mias, G. I. Characterizing extracellular vesicles and their diverse RNA contents. Front. Genet. 11, 700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Frühbeis, C., Helmig, S., Tug, S., Simon, P. & Krämer-Albers, E.-M. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 4, 28239 (2015).

    Article  PubMed  Google Scholar 

  237. Garner, R. T. et al. Multivesicular body and exosome pathway responses to acute exercise. Exp. Physiol. 105, 511–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Nair, V. D. et al. Sedentary and trained older men have distinct circulating exosomal microRNA profiles at baseline and in response to acute exercise. Front. Physiol. 11, 605 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Xiang, H. et al. Characterization of blood-derived exosomal proteins after exercise. J. Int. Med. Res. 48, 030006052095754 (2020).

    Article  CAS  Google Scholar 

  240. Kirchmair, R. et al. Secretoneurin, an angiogenic neuropeptide, induces postnatal vasculogenesis. Circulation 110, 1121–1127 (2004).

    Article  CAS  PubMed  Google Scholar 

  241. Wang, J. et al. Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp. Neurol. 330, 113325 (2020).

    Article  CAS  PubMed  Google Scholar 

  242. Okamoto, M. et al. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proc. Natl Acad. Sci. USA 109, 13100–13105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Kozareva, D. A., O’Leary, O. F., Cryan, J. F. & Nolan, Y. M. Deletion of TLX and social isolation impairs exercise-induced neurogenesis in the adolescent hippocampus. Hippocampus 28, 3–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  244. Chen, C. et al. The exercise-glucocorticoid paradox: how exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front. Neuroendocrinol. 44, 83–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Lin, L., Wu, J., Yuan, Y., Sun, X. & Zhang, L. Working memory predicts hypothalamus-pituitary-adrenal axis response to psychosocial stress in males. Front. Psychiatry 11, 142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Young, A. H. The effects of HPA axis function on cognition and its implications for the pathophysiology of bipolar disorder. Harv. Rev. Psychiatry 22, 331–333 (2014).

    Article  PubMed  Google Scholar 

  247. Gardner, M. et al. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and cognitive capability at older ages: individual participant meta-analysis of five cohorts. Sci. Rep. 9, 4555 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Nisoli, E. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299, 896–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  249. Nisoli, E. et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl Acad. Sci. USA 101, 16507–16512 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Engeli, S. et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J. Clin. Invest. 122, 4675–4679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Fedele, E. & Ricciarelli, R. Memory enhancers for Alzheimer’s dementia: focus on cGMP. Pharmaceuticals 14, 61 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Amoasii, L. et al. NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc. Natl Acad. Sci. USA 116, 11299–11308 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Jakaria, M. D. et al. Molecular insights into NR4A2(Nurr1): an emerging target for neuroprotective therapy against neuroinflammation and neuronal cell death. Mol. Neurobiol. 56, 5799–5814 (2019).

    Article  CAS  PubMed  Google Scholar 

  254. Moon, M. et al. Nurr1 (NR4A2) regulates Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell 18, e12866 (2019).

    Article  PubMed  CAS  Google Scholar 

  255. Jeon, S. G. et al. The critical role of Nurr1 as a mediator and therapeutic target in Alzheimer’s disease-related pathogenesis. Aging Dis. 11, 705 (2020).

    Article  PubMed  Google Scholar 

  256. Shim, J.-W. et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using nurr1 overexpression. Stem Cell 25, 1252–1262 (2007).

    Article  CAS  Google Scholar 

  257. Lee, C. et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21, 443–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kim, K. H., Son, J. M., Benayoun, B. A. & Lee, C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 28, 516–524.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zarse, K. & Ristow, M. A mitochondrially encoded hormone ameliorates obesity and insulin resistance. Cell Metab. 21, 355–356 (2015).

    Article  CAS  PubMed  Google Scholar 

  260. Alis, R., Lucia, A., Blesa, J. R. & Sanchis-Gomar, F. The role of mitochondrial derived peptides (MDPs) in metabolism: MOTS-C a new mitokine. J. Cell. Physiol. 230, 2903–2904 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Yong, C. & Tang, B. A mitochondrial encoded messenger at the nucleus. Cells 7, 105 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  262. Reynolds, J. C. et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat. Commun. 12, 470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kim, S.-J. et al. Mitochondrial-derived peptides in aging and age-related diseases. GeroScience https://doi.org/10.1007/s11357-020-00262-5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Cummings, J., Lee, G., Ritter, A. & Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. 4, 195–214 (2018).

    Article  Google Scholar 

  265. Cummings, J. et al. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res. Ther. 8, 39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Koprich, J. B., Kalia, L. V. & Brotchie, J. M. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat. Rev. Neurosci. 18, 515–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  267. Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Prim. 1, 15005 (2015).

    Article  PubMed  Google Scholar 

  268. Keshavan, M. S., Lawler, A. N., Nasrallah, H. A. & Tandon, R. New drug developments in psychosis: challenges, opportunities and strategies. Prog. Neurobiol. 152, 3–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  269. Ionescu, D. F. & Papakostas, G. I. Experimental medication treatment approaches for depression. Transl. Psychiatry 7, e1068–e1068 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Robbins, T. W. Cross-species studies of cognition relevant to drug discovery: a translational approach: cross-species cognitive studies and drug discovery. Br. J. Pharmacol. 174, 3191–3199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z. & Fan, G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation: exercise and epigenetics. Eur. J. Neurosci. 33, 383–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  272. Intlekofer, K. A. et al. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38, 2027–2034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 5, e15092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Sølvsten, C. A. E., de Paoli, F., Christensen, J. H. & Nielsen, A. L. Voluntary physical exercise induces expression and epigenetic remodeling of VegfA in the rat hippocampus. Mol. Neurobiol. 55, 567–582 (2018).

    Article  PubMed  CAS  Google Scholar 

  275. Villarroya, F. Irisin, turning up the heat. Cell Metab. 15, 277–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  276. Hoffman-Goetz, L., Pervaiz, N., Packer, N. & Guan, J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav. Immun. 24, 1105–1115 (2010).

    Article  CAS  PubMed  Google Scholar 

  277. Packer, N. & Hoffman-Goetz, L. Apoptotic and inflammatory cytokine protein expression in intestinal lymphocytes after acute treadmill exercise in young and old mice. J. Sports Med. Phys. Fit. 52, 202–211 (2012).

    CAS  Google Scholar 

  278. Ticinesi, A. et al. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. Exerc. Immunol. Rev. 25, 84–95 (2019).

    PubMed  Google Scholar 

  279. Clark, A. & Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J. Int. Soc. Sports Nutr. 13, 43 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Lambert, C. P., Wright, N. R., Finck, B. N. & Villareal, D. T. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J. Appl. Physiol. 105, 473–478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Lamprecht, M. & Frauwallner, A. Exercise, intestinal barrier dysfunction and probiotic supplementation. Med. Sport Sci. 59, 47–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  282. van Wijck, K. et al. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G155–G168 (2012).

    Article  PubMed  CAS  Google Scholar 

  283. McGee, S. L. & Hargreaves, M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 16, 495–505 (2020).

    Article  CAS  PubMed  Google Scholar 

  284. Fontana, L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat. Rev. Cardiol. 15, 566–577 (2018).

    Article  PubMed  Google Scholar 

  285. Jaspers, R. T. et al. Exercise, fasting, and mimetics: toward beneficial combinations? FASEB J. 31, 14–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  286. Marcinko, K. et al. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol. Metab. 4, 643–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Muise, E. S. et al. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS ONE 14, e0211568 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J. & Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 19, 563–572 (2019).

    Article  CAS  PubMed  Google Scholar 

  289. Otero-Díaz, B. et al. Exercise induces white adipose tissue browning across the weight spectrum in humans. Front. Physiol. 9, 1781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Slentz, C. A., Houmard, J. A. & Kraus, W. E. Exercise, abdominal obesity, skeletal muscle, and metabolic risk: evidence for a dose response. Obesity 17, S27–S33 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank past and present members of the Hannan Laboratory for experimental data and discussions that have informed the ideas presented in this article. A.J.H. is a National Health and Medical Research Council (NHMRC) Principal Research Fellow and is supported by Projects Grants and an Ideas Grant from the NHMRC and a Discovery Project Grant from the Australian Research Council, as well as the DHB Foundation, Equity Trustees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hannan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubert, C., Hannan, A.J. Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 20, 862–879 (2021). https://doi.org/10.1038/s41573-021-00217-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00217-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research