Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Benefit of lifestyle-based T2DM prevention is influenced by prediabetes phenotype

Abstract

The prevention of type 2 diabetes mellitus (T2DM) is a target priority for the WHO and the United Nations and is a key priority in the 2018 Berlin Declaration, which is a global call for early actions related to T2DM. Health-care policies advocate that individuals at high risk of developing T2DM undertake lifestyle modification, irrespective of whether the prediabetes phenotype is defined by hyperglycaemia in the postprandial state (impaired glucose tolerance) and/or fasting state (impaired fasting glucose) or by intermediate HbA1c levels. However, current evidence indicates that diabetes prevention programmes based on lifestyle change have not been successful in preventing T2DM in individuals with isolated impaired fasting glucose. We propose that further research is needed to identify effective lifestyle interventions for individuals with isolated impaired fasting glucose. Furthermore, we call for the identification of innovative approaches that better identify people with impaired glucose tolerance, who benefit from the currently available lifestyle-based diabetes prevention programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct pathophysiological profiles of prediabetes phenotypes.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas, Ninth Edition 2019 (IDF, 2019).

  2. Herman, W. H. The economic costs of diabetes: is it time for a new treatment paradigm? Diabetes Care. 36, 775–776 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. World Health Organiszation. Global Report on Diabetes (WHO, 2016).

  4. United Nations General Assembly. Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Non-Communicable Diseases (UN, 2012).

  5. Khunti, K. et al. The Berlin Declaration: a call to improve early actions related to type 2 diabetes. Why is primary care important? Prim. Care Diabetes 12, 383–392 (2018).

    PubMed  Google Scholar 

  6. American Diabetes Association. Standards of medical care in diabetes — 2017 abridged for primary care providers. Clin. Diabetes 35, 5–26 (2017).

    PubMed Central  Google Scholar 

  7. Waugh, N. R., Shyangdan, D., Taylor-Phillips, S., Suri, G. & Hall, B. Screening for type 2 diabetes: a short report for the national screening committee. Health Technol. Assess. 17, 1–90 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Albright, A. L. & Gregg, E. W. Preventing type 2 diabetes in communities across the U.S.: the National Diabetes Prevention Program. Am. J. Prev. Med. 44, S346–S351 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Diabetes Prevention Program Research Group. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 25, 2165–2171 (2002).

    Google Scholar 

  10. Ramachandran, A. et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologica 49, 289–297 (2006).

    CAS  Google Scholar 

  11. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  12. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    CAS  PubMed  Google Scholar 

  13. Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care. 20, 537–544 (1997).

    CAS  PubMed  Google Scholar 

  14. Lindstrom, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368, 1673–1679 (2006).

    PubMed  Google Scholar 

  15. Li, G. et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 371, 1783–1789 (2008).

    PubMed  Google Scholar 

  16. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 374, 1677–1686 (2009).

    PubMed Central  Google Scholar 

  17. Gillies, C. L. et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. Br. Med. J. 334, 299 (2007).

    Google Scholar 

  18. Barry, E. et al. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. Br. Med. J. 356, i6538 (2017).

    Google Scholar 

  19. Gong, Q. et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 7, 452–461 (2019).

    PubMed  Google Scholar 

  20. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes Care 42, S13–S28 (2019).

    Google Scholar 

  21. World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IFG Consultation (WHO, 2006).

  22. Yip, W. C. Y., Sequeira, I. R., Plank, L. D. & Poppitt, S. D. Prevalence of pre-diabetes across ethnicities: a review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for classification of dysglycaemia. Nutrients 9, E1273 (2017).

    PubMed  Google Scholar 

  23. Eades, C. E., France, E. F. & Evans, J. M. Prevalence of impaired glucose regulation in Europe: a meta-analysis. Eur. J. Public Health 26, 699–706 (2016).

    PubMed  Google Scholar 

  24. Sentell, T. L., He, G., Gregg, E. W. & Schillinger, D. Racial/ethnic variation in prevalence estimates for United States prediabetes under alternative 2010 American Diabetes Association criteria: 1988-2008. Ethn. Dis. 22, 451–458 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Anjana, R. M. et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 5, 585–596 (2017).

    PubMed  Google Scholar 

  26. Kosaka, K., Noda, M. & Kuzuya, T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res. Clin. Pract. 67, 152–162 (2005).

    PubMed  Google Scholar 

  27. Weber, M. B. et al. The stepwise approach to diabetes prevention: results from the D-CLIP randomized controlled trial. Diabetes Care 39, 1760–1767 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Saito, T. et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch. Intern. Med. 171, 1352–1360 (2011).

    PubMed  Google Scholar 

  29. Thankappan, K. R. et al. A peer-support lifestyle intervention for preventing type 2 diabetes in India: a cluster-randomized controlled trial of the Kerala diabetes prevention program. PLoS Med. 15, e1002575 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Davies, M. J. et al. A community based primary prevention programme for type 2 diabetes integrating identification and lifestyle intervention for prevention: the Let’s Prevent Diabetes cluster randomised controlled trial. Prev. Med. 84, 48–56 (2016).

    PubMed  Google Scholar 

  31. Wareham, N. J. & Pfister, R. Diabetes: glycated hemoglobin is a marker of diabetes and CVD risk. Nat. Rev. Cardiol. 7, 367–368 (2010).

    CAS  PubMed  Google Scholar 

  32. Aziz, Z., Absetz, P., Oldroyd, J., Pronk, N. P. & Oldenburg, B. A systematic review of real-world diabetes prevention programs: learnings from the last 15 years. Implement. Sci. 10, 172 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Franco, L. J. et al. Performance of glycated haemoglobin (HbA1c) as a screening test for diabetes and impaired glucose tolerance (IGT) in a high risk population—the Brazilian Xavante Indians. Diabetes Res. Clin. Pract. 106, 337–342 (2014).

    CAS  PubMed  Google Scholar 

  34. Sequeira, I. R. & Poppitt, S. D. HbA1c as a marker of prediabetes: a reliable screening tool or not? Insights Nutr. Metab. 1, 21–29 (2017).

    Google Scholar 

  35. Noble, D., Mathur, R., Dent, T., Meads, C. & Greenhalgh, T. Risk models and scores for type 2 diabetes: systematic review. Br. Med. J. 343, d7163 (2011).

    Google Scholar 

  36. Costa, B. et al. Delaying progression to type 2 diabetes among high-risk Spanish individuals is feasible in real-life primary healthcare settings using intensive lifestyle intervention. Diabetologica 55, 1319–1328 (2012).

    CAS  Google Scholar 

  37. Anjana, R. M. et al. Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES). Diabetes Care 38, 1441–1448 (2015).

    PubMed  Google Scholar 

  38. Morris, D. H. et al. Progression rates from HbA1c 6.0-6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologica 56, 1489–1493 (2013).

    CAS  Google Scholar 

  39. Richter, B., Hemmingsen, B., Metzendorf, M. I. & Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 10, CD012661 (2018).

    PubMed  Google Scholar 

  40. Kanat, M. et al. Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 61, 447–453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Faerch, K., Borch-Johnsen, K., Holst, J. J. & Vaag, A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologica 52, 1714–1723 (2009).

    CAS  Google Scholar 

  42. Glechner, A. et al. Effects of lifestyle changes on adults with prediabetes: a systematic review and meta-analysis. Prim. Care Diabetes 12, 393–408 (2018).

    PubMed  Google Scholar 

  43. Faerch, K. et al. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care 32, 439–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kanat, M. et al. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol. 48, 209–217 (2011).

    CAS  PubMed  Google Scholar 

  45. Gujral, U. P., Narayan, K. M., Kahn, S. E. & Kanaya, A. M. The relative associations of beta-cell function and insulin sensitivity with glycemic status and incident glycemic progression in migrant Asian Indians in the United States: the MASALA study. J. Diabetes Complicat. 28, 45–50 (2014).

    PubMed  Google Scholar 

  46. O’Donoghue, G. et al. Phenotypic responses to a lifestyle intervention do not account for inter-individual variability in glucose tolerance for individuals at high risk of type 2 diabetes. Front. Physiol. 10, 317 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Kantartzis, K. et al. The impact of liver fat vs visceral fat in determining categories of prediabetes. Diabetologica 53, 882–889 (2010).

    CAS  Google Scholar 

  48. Borel, A. L. et al. Visceral, subcutaneous abdominal adiposity and liver fat content distribution in normal glucose tolerance, impaired fasting glucose and/or impaired glucose tolerance. Int. J. Obes. 39, 495–501 (2015).

    CAS  Google Scholar 

  49. Meyer, C. et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 29, 1909–1914 (2006).

    CAS  PubMed  Google Scholar 

  50. Faerch, K. et al. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologica 51, 853–861 (2008).

    CAS  Google Scholar 

  51. Healy, G. N., Dunstan, D. W., Shaw, J. E., Zimmet, P. Z. & Owen, N. Beneficial associations of physical activity with 2-h but not fasting blood glucose in Australian adults. Diabetes Care 29, 2598–2604 (2006).

    CAS  PubMed  Google Scholar 

  52. Viscogliosi, G. et al. Mediterranean dietary pattern adherence: associations with prediabetes, metabolic syndrome, and related microinflammation. Metab. Syndr. Relat. Disord. 11, 210–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Marcinko, K. et al. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol. Metab. 4, 903–915 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marquis-Gravel, G. et al. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients. Prev. Med. Rep. 2, 314–318 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Lim, E. L. et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologica 54, 2506–2514 (2011).

    CAS  Google Scholar 

  56. Steven, S. et al. Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care 39, 158–165 (2016).

    CAS  PubMed  Google Scholar 

  57. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    PubMed  Google Scholar 

  58. Taylor, R. Type 2 diabetes: etiology and reversibility. Diabetes Care 36, 1047–1055 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Armato, J. P., DeFronzo, R. A., Abdul-Ghani, M. & Ruby, R. J. Successful treatment of prediabetes in clinical practice using physiological assessment (STOP DIABETES). Lancet Diabetes Endocrinol. 6, 781–789 (2018).

    PubMed  Google Scholar 

  60. Christensen, P. et al. Men and women respond differently to rapid weight loss: metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 20, 2840–2851 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vistisen, D. et al. Reversion from prediabetes to normoglycaemia and risk of cardiovascular disease and mortality: the Whitehall II cohort study. Diabetologica 62, 1385–1390 (2019).

    Google Scholar 

  62. Abbasi, A. et al. A systematic review of biomarkers and risk of incident type 2 diabetes: an overview of epidemiological, prediction and aetiological research literature. PLoS One. 11, e0163721 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Walford, G. A. et al. Metabolite profiles of diabetes incidence and intervention response in the Diabetes Prevention Program. Diabetes 65, 1424–1433 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dunseath, G. J. et al. Performance evaluation of a self-administered home oral glucose tolerance test kit in a controlled clinical research setting. Diabet. Med. 36, 862–867 (2019).

    CAS  PubMed  Google Scholar 

  65. Bergman, M. et al. Petition to replace current OGTT criteria for diagnosing prediabetes with the 1-hour post-load plasma glucose>/=155mg/dl (8.6mmol/L). Diabetes Res. Clin. Pract. 146, 18–33 (2018).

    PubMed  Google Scholar 

  66. Poplin, R. et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning. Nat. Biomed. Eng. 2, 158–164 (2017).

    Google Scholar 

  67. International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.J.T., M.D.C. and T.S. researched data for the article and wrote the article. R.J.T., M.D.C., T.S., K.R.T., P.Z.Z., B.O., D.R.O. and J.E.S. contributed substantially to discussion of the content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Robyn J. Tapp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, M.D., Sathish, T., Zimmet, P.Z. et al. Benefit of lifestyle-based T2DM prevention is influenced by prediabetes phenotype. Nat Rev Endocrinol 16, 395–400 (2020). https://doi.org/10.1038/s41574-019-0316-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0316-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing