Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit

Abstract

Exercise is fundamental for good health, whereas physical inactivity underpins many chronic diseases of modern society. It is well appreciated that regular exercise improves metabolism and the metabolic phenotype in a number of tissues. The phenotypic alterations observed in skeletal muscle are partly mediated by transcriptional responses that occur following each individual bout of exercise. This adaptive response increases oxidative capacity and influences the function of myokines and extracellular vesicles that signal to other tissues. Our understanding of the epigenetic and transcriptional mechanisms that mediate the skeletal muscle gene expression response to exercise as well as of their upstream signalling pathways has advanced substantially in the past 10 years. With this knowledge also comes the opportunity to design new therapeutic strategies based on the biology of exercise for a variety of chronic conditions where regular exercise might be a challenge. This Review provides an overview of the beneficial adaptive responses to exercise and details the molecular mechanisms involved. The possibility of designing therapeutic interventions based on these molecular mechanisms is addressed, using relevant examples that have exploited this approach.

Key points

  • Exercise is effective in the primary prevention of 35 chronic diseases.

  • The adaptive response to exercise, which is mediated in part by transcriptional alterations in metabolic and other genes, is an important contributor to these health benefits.

  • Identifying the mechanisms that mediate the exercise adaptive response could uncover molecular targets to guide the design of new medicines to better treat chronic diseases.

  • A number of signalling, epigenetic and transcriptional molecules identified as contributing to the exercise adaptive response have been targeted pharmacologically to deliver health benefits in proof-of-concept studies.

  • A further understanding of the complexities of the molecular responses to exercise will provide new opportunities to engage these mechanisms therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exercise adaptations and their theoretical therapeutic potential.
Fig. 2: The MEF2–class IIa HDAC axis as a target to replicate aspects of the exercise adaptive response.

Similar content being viewed by others

References

  1. Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    PubMed  CAS  Google Scholar 

  3. Febbraio, M. A. Exercise metabolism in 2016: health benefits of exercise - more than meets the eye! Nat. Rev. Endocrinol. 13, 72–74 (2017).

    PubMed  Google Scholar 

  4. Williams, R. S. & Neufer, P. D. in Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems (eds Rowell, L. B. & Shepherd, J. T.) (American Physiological Society, 1996).

  5. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    PubMed  CAS  Google Scholar 

  6. Baar, K. Training for endurance and strength: lessons from cell signaling. Med. Sci. Sports Exerc. 38, 1939–1944 (2006).

    PubMed  Google Scholar 

  7. Hoppeler, H., Baum, O., Lurman, G. & Mueller, M. Molecular mechanisms of muscle plasticity with exercise. Compr. Physiol. 1, 1383–1412 (2011).

    PubMed  Google Scholar 

  8. Coffey, V. G. & Hawley, J. A. Concurrent exercise training: do opposites distract? J. Physiol. 595, 2883–2896 (2017).

    PubMed  CAS  Google Scholar 

  9. Gibala, M. J. & Little, J. P. Physiological basis of brief vigorous exercise to improve health. J. Physiol. 598, 61–69 (2020).

    PubMed  CAS  Google Scholar 

  10. Konopka, A. R. & Harber, M. P. Skeletal muscle hypertrophy after aerobic exercise training. Exerc. Sport. Sci. Rev. 42, 53–61 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Wilkinson, S. B. et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 586, 3701–3717 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Chen, Z. P. et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52, 2205–2212 (2003). This study uncovered the exercise intensity-dependent activation of AMPK in human skeletal muscle.

    PubMed  CAS  Google Scholar 

  13. Hardie, D. G., Schaffer, B. E. & Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190–201 (2016).

    PubMed  CAS  Google Scholar 

  14. Hanson, P. I., Meyer, T., Stryer, L. & Schulman, H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12, 943–956 (1994).

    PubMed  CAS  Google Scholar 

  15. Rose, A. J. & Hargreaves, M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J. Physiol. 553, 303–309 (2003). This was the first study to quantify CaMKII activation in human skeletal muscle in response to exercise.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Ojuka, E. O., Goyaram, V. & Smith, J. A. The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 303, E322–E331 (2012).

    PubMed  CAS  Google Scholar 

  17. Richter, E. A. & Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 93, 993–1017 (2013).

    PubMed  CAS  Google Scholar 

  18. Watt, M. J., Howlett, K. F., Febbraio, M. A., Spriet, L. L. & Hargreaves, M. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J. Physiol. 534, 269–278 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Warren, J. B., Dalton, N., Turner, C., Clark, T. J. & Toseland, P. A. Adrenaline secretion during exercise. Clin. Sci. 66, 87–90 (1984).

    CAS  Google Scholar 

  20. Goldstein, D. S. Plasma catecholamines and essential hypertension. An analytical review. Hypertension 5, 86–99 (1983).

    PubMed  CAS  Google Scholar 

  21. Wojtaszewski, J. F., Nielsen, P., Hansen, B. F., Richter, E. A. & Kiens, B. Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528, 221–226 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Blair, E. et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet. 10, 1215–1220 (2001).

    PubMed  CAS  Google Scholar 

  23. Burwinkel, B. et al. Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am. J. Hum. Genet. 76, 1034–1049 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Hood, D. A., Memme, J. M., Oliveira, A. N. & Triolo, M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu. Rev. Physiol. 81, 19–41 (2019).

    PubMed  CAS  Google Scholar 

  25. Kraniou, G. N., Cameron-Smith, D. & Hargreaves, M. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle. Exp. Physiol. 89, 559–563 (2004).

    PubMed  CAS  Google Scholar 

  26. Burgomaster, K. A. et al. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1970–R1976 (2007).

    PubMed  CAS  Google Scholar 

  27. Stuart, C. A., Lee, M. L., South, M. A., Howell, M. E. A. & Stone, M. H. Muscle hypertrophy in prediabetic men after 16 wk of resistance training. J. Appl. Physiol. 123, 894–901 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Jorgensen, S. B. et al. Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am. J. Physiol. Endocrinol. Metab. 292, E331–E339 (2007).

    PubMed  Google Scholar 

  29. Jorgensen, S. B. et al. Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J. 19, 1146–1148 (2005).

    PubMed  Google Scholar 

  30. Maarbjerg, S. J. et al. Genetic impairment of AMPKα2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Am. J. Physiol. Endocrinol. Metab. 297, E924–E934 (2009).

    PubMed  CAS  Google Scholar 

  31. McGee, S. L. et al. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress. FASEB J. 28, 3384–3395 (2014).

    PubMed  CAS  Google Scholar 

  32. Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922–935 (2015). This was one of the first studies to quantify the extensive phosphorylation events that occur in human skeletal muscle in response to exercise.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Potts, G. K. et al. A map of the phosphoproteomic alterations that occur after a bout of maximal-intensity contractions. J. Physiol. 595, 5209–5226 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Nelson, M. E. et al. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J. 38, e102578 (2019).

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Gollnick, P. D. & Saltin, B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin. Physiol. 2, 1–12 (1982).

    PubMed  CAS  Google Scholar 

  36. Holloszy, J. O. & Coyle, E. F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 56, 831–838 (1984).

    PubMed  CAS  Google Scholar 

  37. Hesselink, M. K., Schrauwen-Hinderling, V. & Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 633–645 (2016).

    PubMed  CAS  Google Scholar 

  38. McGlory, C., van Vliet, S., Stokes, T., Mittendorfer, B. & Phillips, S. M. The impact of exercise and nutrition on the regulation of skeletal muscle mass. J. Physiol. 597, 1251–1258 (2019).

    PubMed  CAS  Google Scholar 

  39. Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M. & Hulmi, J. J. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J. Appl. Physiol. 126, 30–43 (2019).

    PubMed  CAS  Google Scholar 

  40. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    PubMed  CAS  Google Scholar 

  41. Vettor, R. et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 306, E519–E528 (2014).

    PubMed  CAS  Google Scholar 

  42. Brouwers, B., Hesselink, M. K., Schrauwen, P. & Schrauwen-Hinderling, V. B. Effects of exercise training on intrahepatic lipid content in humans. Diabetologia 59, 2068–2079 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Stanford, K. I. & Goodyear, L. J. Exercise regulation of adipose tissue. Adipocyte 5, 153–162 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Thompson, D., Karpe, F., Lafontan, M. & Frayn, K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol. Rev. 92, 157–191 (2012).

    PubMed  CAS  Google Scholar 

  45. Kantartzis, K. et al. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 58, 1281–1288 (2009).

    PubMed  CAS  Google Scholar 

  46. Younossi, Z. M., Marchesini, G., Pinto-Cortez, H. & Petta, S. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation 103, 22–27 (2019).

    PubMed  Google Scholar 

  47. van der Windt, D. J., Sud, V., Zhang, H., Tsung, A. & Huang, H. The effects of physical exercise on fatty liver disease. Gene Expr. 18, 89–101 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Trevellin, E. et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 63, 2800–2811 (2014).

    PubMed  CAS  Google Scholar 

  49. Flores-Opazo, M. et al. Exercise and GLUT4 in human subcutaneous adipose tissue. Physiol. Rep. 6, e13918 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Tsiloulis, T. et al. No evidence of white adipocyte browning after endurance exercise training in obese men. Int. J. Obes. 42, 721–727 (2018).

    CAS  Google Scholar 

  51. Camera, D. M., Anderson, M. J., Hawley, J. A. & Carey, A. L. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur. J. Appl. Physiol. 109, 307–316 (2010).

    PubMed  Google Scholar 

  52. Larsen, S. et al. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand. J. Med. Sci. Sports 25, e59–e69 (2015).

    PubMed  CAS  Google Scholar 

  53. Herz, C. T. & Kiefer, F. W. Adipose tissue browning in mice and humans. J. Endocrinol. 241, R97–R109 (2019).

    PubMed  CAS  Google Scholar 

  54. Tyndall, A. V. et al. Protective effects of exercise on cognition and brain health in older adults. Exerc. Sport. Sci. Rev. 46, 215–223 (2018).

    PubMed  Google Scholar 

  55. Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J. & Woods, J. A. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport. Sci. Rev. 47, 75–85 (2019).

    PubMed  Google Scholar 

  56. Pedersen, B. K., Steensberg, A. & Schjerling, P. Muscle-derived interleukin-6: possible biological effects. J. Physiol. 536, 329–337 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    PubMed  CAS  Google Scholar 

  58. Whitham, M. & Febbraio, M. A. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat. Rev. Drug. Discov. 15, 719–729 (2016).

    PubMed  CAS  Google Scholar 

  59. Barlow, J. P. & Solomon, T. P. Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am. J. Physiol. Endocrinol. Metab. 314, E297–E307 (2018).

    PubMed  CAS  Google Scholar 

  60. Pedersen, B. K. Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 15, 383–392 (2019).

    PubMed  Google Scholar 

  61. Takahashi, H. et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 1, 291–303 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Ennequin, G., Sirvent, P. & Whitham, M. Role of exercise-induced hepatokines in metabolic disorders. Am. J. Physiol. Endocrinol. Metab. 317, E11–E24 (2019).

    PubMed  CAS  Google Scholar 

  64. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019). This paper uncovered a muscle–gut–muscle signalling axis that regulates adaptation to exercise and exercise performance.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Hawley, J. A. Microbiota and muscle highway – two-way traffic. Nat. Rev. Endocrinol. 16, 71–72 (2020).

    PubMed  Google Scholar 

  66. Parker, B. L. et al. Multiplexed temporal quantification of the exercise-regulated plasma peptidome. Mol. Cell Proteom. 16, 2055–2068 (2017).

    CAS  Google Scholar 

  67. Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251.e4 (2018). This study quantified the extensive number of proteins released from skeletal muscle in extracellular vesicles during exercise and showed that they signal to the liver.

    PubMed  CAS  Google Scholar 

  68. Lewis, G. D. et al. Metabolic signatures of exercise in human plasma. Sci. Transl. Med. 2, 33ra37 (2010). This work defined the numerous metabolites altered in the plasma in response to exercise and showed that a number of these metabolites have transcriptional effects in skeletal muscle cells.

    PubMed  PubMed Central  Google Scholar 

  69. Brennan, A. M. et al. Plasma metabolite profiles in response to chronic exercise. Med. Sci. Sports Exerc. 50, 1480–1486 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Flores-Opazo, M., Raajendiran, A., Watt, M. J. & Hargreaves, M. Exercise serum increases GLUT4 in human adipocytes. Exp. Physiol. 104, 630–634 (2019).

    PubMed  CAS  Google Scholar 

  71. Neufer, P. D. & Dohm, G. L. Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle. Am. J. Physiol. 265, C1597–C1603 (1993).

    PubMed  CAS  Google Scholar 

  72. Kraniou, Y., Cameron-Smith, D., Misso, M., Collier, G. & Hargreaves, M. Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J. Appl. Physiol. 88, 794–796 (2000).

    PubMed  CAS  Google Scholar 

  73. Pilegaard, H., Ordway, G. A., Saltin, B. & Neufer, P. D. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am. J. Physiol. Endocrinol. Metab. 279, E806–E814 (2000). One of the first studies to characterize the widespread transcriptional response to exercise in the immediate post-exercise period.

    PubMed  CAS  Google Scholar 

  74. Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546, 851–858 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Perry, C. G. et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 588, 4795–4810 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Egan, B., O’Connor, P. L., Zierath, J. R. & O’Gorman, D. J. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS One 8, e74098 (2013). This paper provided an extensive time course analysis of the transcriptional and protein expression responses to exercise training in human skeletal muscle.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Robinson, M. M. et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Miller, B. F., Konopka, A. R. & Hamilton, K. L. The rigorous study of exercise adaptations: why mRNA might not be enough. J. Appl. Physiol. 121, 594–596 (2016).

    PubMed  Google Scholar 

  79. McGee, S. L. & Hargreaves, M. Epigenetics and exercise. Trends Endocrinol. Metab. 30, 636–645 (2019).

    PubMed  CAS  Google Scholar 

  80. McGee, S. L. & Walder, K. R. Exercise and the skeletal muscle epigenome. Cold Spring Harb. Perspect. Med. 7, a029876 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Bird, A. P. & Wolffe, A. P. Methylation-induced repression–belts, braces, and chromatin. Cell 99, 451–454 (1999).

    PubMed  CAS  Google Scholar 

  82. Barres, R. et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405–411 (2012). The first study to show that methylation of DNA linked to exercise-responsive genes is reduced in response to exercise.

    PubMed  CAS  Google Scholar 

  83. Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    PubMed  CAS  Google Scholar 

  86. Lee, J. S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell 142, 682–685 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Gorisch, S. M., Wachsmuth, M., Toth, K. F., Lichter, P. & Rippe, K. Histone acetylation increases chromatin accessibility. J. Cell Sci. 118, 5825–5834 (2005).

    PubMed  Google Scholar 

  88. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    PubMed  CAS  Google Scholar 

  89. Smith, J. A., Kohn, T. A., Chetty, A. K. & Ojuka, E. O. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am. J. Physiol. Endocrinol. Metab. 295, E698–E704 (2008). This study linked the activation of CaMKII during exercise to lysine acetylation of histone 3 at the GLUT4 promoter and provided one of the first examples of epigenetic control of exercise-induced transcriptional responses.

    PubMed  CAS  Google Scholar 

  90. McKinsey, T. A., Zhang, C. L. & Olson, E. N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497–504 (2001).

    PubMed  CAS  Google Scholar 

  91. McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. McGee, S. L. & Hargreaves, M. Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53, 1208–1214 (2004).

    PubMed  CAS  Google Scholar 

  93. Akimoto, T., Li, P. & Yan, Z. Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging. Am. J. Physiol. Cell Physiol. 295, C288–C292 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Gaur, V. et al. Disruption of the class IIa HDAC corepressor complex increases energy expenditure and lipid oxidation. Cell Rep. 16, 2802–2810 (2016). One of the first studies to show that manipulation of protein interactions similar to exercise could induce exercise-like transcriptional and metabolic effects.

    PubMed  CAS  Google Scholar 

  95. Ali, I., Conrad, R. J., Verdin, E. & Ott, M. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem. Rev. 118, 1216–1252 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Howlett, K. F. & McGee, S. L. Epigenetic regulation of skeletal muscle metabolism. Clin. Sci. 130, 1051–1063 (2016).

    CAS  Google Scholar 

  97. Dent, J. R. et al. Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation. Mol. Metab. 6, 1574–1584 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. LaBarge, S. A. et al. p300 is not required for metabolic adaptation to endurance exercise training. FASEB J. 30, 1623–1633 (2016).

    PubMed  CAS  Google Scholar 

  99. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Wilson, S. & Filipp, F. V. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst. Biol. Appl. 4, 24 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).

    PubMed  CAS  Google Scholar 

  102. Palstra, R. J. & Grosveld, F. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front. Genet. 3, 195 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Kupr, B., Schnyder, S. & Handschin, C. Role of nuclear receptors in exercise-induced muscle adaptations. Cold Spring Harb. Perspect. Med. 7, a029835 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Reibe, S., Hjorth, M., Febbraio, M. A. & Whitham, M. GeneXX: an online tool for the exploration of transcript changes in skeletal muscle associated with exercise. Physiol. Genomics 50, 376–384 (2018).

    PubMed  CAS  Google Scholar 

  105. Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020). An extensive meta-analysis that has characterized the skeletal muscle transcriptional response to different modes of exercise.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Goode, J. M. et al. The nuclear receptor, Nor-1, induces the physiological responses associated with exercise. Mol. Endocrinol. 30, 660–676 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Pearen, M. A. et al. The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. Mol. Endocrinol. 26, 372–384 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Pearen, M. A. et al. Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance. Mol. Endocrinol. 27, 1897–1917 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Potthoff, M. J. et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Michael, L. F. et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl Acad. Sci. USA 98, 3820–3825 (2001).

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    PubMed  CAS  Google Scholar 

  112. Vega, R. B., Huss, J. M. & Kelly, D. P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20, 1868–1876 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. McKinsey, T. A., Zhang, C. L., Lu, J. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Merrill, G. F., Kurth, E. J., Hardie, D. G. & Winder, W. W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107–E1112 (1997). One of the first studies to show that pharmacological activation of AMPK could induce metabolic effects similar to exercise.

    PubMed  CAS  Google Scholar 

  115. Aschenbach, W. G. et al. Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 51, 567–573 (2002).

    PubMed  CAS  Google Scholar 

  116. McGee, S. L. et al. Exercise increases nuclear AMPKα2 in human skeletal muscle. Diabetes 52, 926–928 (2003).

    PubMed  CAS  Google Scholar 

  117. McGee, S. L. & Hargreaves, M. AMPK and transcriptional regulation. Front. Biosci. 13, 3022–3033 (2008).

    PubMed  CAS  Google Scholar 

  118. McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860–867 (2008).

    PubMed  CAS  Google Scholar 

  119. Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917–926 (2000).

    PubMed  CAS  Google Scholar 

  120. Backs, J., Backs, T., Bezprozvannaya, S., McKinsey, T. A. & Olson, E. N. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol. Cell. Biol. 28, 3437–3445 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Corton, J. M., Gillespie, J. G., Hawley, S. A. & Hardie, D. G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565 (1995).

    PubMed  CAS  Google Scholar 

  122. Winder, W. W. et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88, 2219–2226 (2000).

    PubMed  CAS  Google Scholar 

  123. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507–511 (2017).

    PubMed  CAS  Google Scholar 

  125. Muise, E. S. et al. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS One 14, e0211568 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Zhou, X. et al. PAN-AMPK activation improves renal function in a rat model of progressive diabetic nephropathy. J. Pharmacol. Exp. Ther. 371, 45–55 (2019).

    PubMed  CAS  Google Scholar 

  127. Arad, M. et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. 109, 357–362 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Fan, W. et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 25, 1186–1193.e4 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003).

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Chen, W., Wang, L. L., Liu, H. Y., Long, L. & Li, S. Peroxisome proliferator-activated receptor δ-agonist, GW501516, ameliorates insulin resistance, improves dyslipidaemia in monosodium L-glutamate metabolic syndrome mice. Basic Clin. Pharmacol. Toxicol. 103, 240–246 (2008).

    PubMed  CAS  Google Scholar 

  131. Bernardo, B. L. et al. Postnatal PPARδ activation and myostatin inhibition exert distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice. PLoS One 5, e11307 (2010).

    PubMed  PubMed Central  Google Scholar 

  132. Dimopoulos, N., Watson, M., Green, C. & Hundal, H. S. The PPARδ agonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilisation or insulin sensitivity in rat L6 skeletal muscle cells. FEBS Lett. 581, 4743–4748 (2007).

    PubMed  CAS  Google Scholar 

  133. Doktorova, M. et al. Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci. Rep. 7, 846 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Miura, P. et al. Pharmacological activation of PPARβ/δ stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Hum. Mol. Genet. 18, 4640–4649 (2009).

    PubMed  CAS  Google Scholar 

  135. Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nat. Med. 10, 245–247 (2004).

    PubMed  CAS  Google Scholar 

  136. Borland, M. G. et al. Inhibition of tumorigenesis by peroxisome proliferator-activated receptor (PPAR)-dependent cell cycle blocks in human skin carcinoma cells. Toxicology 404–405, 25–32 (2018).

    PubMed  Google Scholar 

  137. Ji, Y., Li, H., Wang, F. & Gu, L. PPARβ/δ agonist GW501516 inhibits tumorigenicity of undifferentiated nasopharyngeal carcinoma in C666-1 cells by promoting apoptosis. Front. Pharmacol. 9, 648 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007).

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002).

    PubMed  CAS  Google Scholar 

  140. Hudson, G. M., Watson, P. J., Fairall, L., Jamieson, A. G. & Schwabe, J. W. Insights into the recruitment of class IIa histone deacetylases (HDACs) to the SMRT/NCoR transcriptional repression complex. J. Biol. Chem. 290, 18237–18244 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Gaur, V. et al. Scriptaid enhances skeletal muscle insulin action and cardiac function in obese mice. Diabetes Obes. Metab. 19, 936–943 (2017).

    PubMed  CAS  Google Scholar 

  142. Backs, J., Song, K., Bezprozvannaya, S., Chang, S. & Olson, E. N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell. Biol. 24, 8374–8385 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Seidel, C., Schnekenburger, M., Dicato, M. & Diederich, M. Histone deacetylase 6 in health and disease. Epigenomics 7, 103–118 (2015).

    PubMed  CAS  Google Scholar 

  146. Fan, W. & Evans, R. M. Exercise mimetics: impact on health and performance. Cell Metab. 25, 242–247 (2017).

    PubMed  CAS  Google Scholar 

  147. Hawley, J. A., Joyner, M. J. & Green, D. J. Mimicking exercise: what matters most and where to next? J. Physiol. https://doi.org/10.1113/jp278761 (2019).

    Article  Google Scholar 

  148. Even-Faitelson, L., Hassan-Zadeh, V., Baghestani, Z. & Bazett-Jones, D. P. Coming to terms with chromatin structure. Chromosoma 125, 95–110 (2016).

    PubMed  CAS  Google Scholar 

  149. Dultz, E. et al. Quantitative imaging of chromatin decompaction in living cells. Mol. Biol. Cell 29, 1763–1777 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Talbert, P. B., Meers, M. P. & Henikoff, S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat. Rev. Genet. 20, 283–297 (2019).

    PubMed  CAS  Google Scholar 

  151. Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Nicolas, D., Zoller, B., Suter, D. M. & Naef, F. Modulation of transcriptional burst frequency by histone acetylation. Proc. Natl Acad. Sci. USA 115, 7153–7158 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the many researchers whose work they have not been able to cite in this Review. Original work by the authors was supported by the Diabetes Australia Research Program and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sean L. McGee or Mark Hargreaves.

Ethics declarations

Competing interests

Both authors hold equity in Imitex Pty Ltd., a drug discovery start-up that was spun out from papers published by the authors that have identified the MEF2-class IIa HDAC axis as a druggable target to replicate aspects of the exercise adaptive response. This pathway is discussed in the current manuscript, along with many others that have been studied within the field.

Additional information

Peer review information

Nature Reviews Endocrinology thanks M.H. Laughlin and M. Tarnopolsky for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Type II fibres

Muscle fibres that are fast twitch, are able to produce large amounts of tension, have a fairly high reliance on anaerobic ATP production and fatigue easily.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGee, S.L., Hargreaves, M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol 16, 495–505 (2020). https://doi.org/10.1038/s41574-020-0377-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0377-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing