Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Urbanization and the gut microbiota in health and inflammatory bowel disease

Abstract

In the 21st century, urbanization represents a major demographic shift in developed and developing countries. Rapid urbanization in the developing world has been associated with an increasing incidence of several autoimmune diseases, including IBD. Patients with IBD exhibit a decrease in the diversity and richness of the gut microbiota, while urbanization attenuates the gut microbial diversity and might have a role in the pathogenesis of IBD. Environmental exposures during urbanization, including Westernization of diet, increased antibiotic use, pollution, improved hygiene status and early-life microbial exposure, have been shown to affect the gut microbiota. The disparate patterns of the gut microbiota composition in rural and urban areas offer an opportunity to understand the contribution of a ‘rural microbiome’ in potentially protecting against the development of IBD. This Perspective discusses the effect of urbanization and its surrogates on the gut microbiome (bacteriome, virome, mycobiome and helminths) in both human health and IBD and how such changes might be associated with the development of IBD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential gut microbial community assembly scenarios in rural and urban settings.
Fig. 2: Diet changes during urbanization and effects on the gut microbiota.
Fig. 3: The changing landscape of the gut microbiome during urbanization and its relation to IBD.

Similar content being viewed by others

References

  1. Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    Article  PubMed  Google Scholar 

  2. Kaplan, G. G. & Ng, S. C. Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol. Hepatol. 1, 307–316 (2016).

    Article  PubMed  Google Scholar 

  3. Cheema, A., Adeloye, D., Sidhu, S., Sridhar, D. & Chan, K. Y. Urbanization and prevalence of type 2 diabetes in Southern Asia: a systematic analysis. J. Glob. Health 4, 010404 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allender, S., Foster, C., Hutchinson, L. & Arambepola, C. Quantification of urbanization in relation to chronic diseases in developing countries: a systematic review. J. Urban Health-Bull. New York Acad. Med. 85, 938–951 (2008).

    Google Scholar 

  5. Seto, K. C., Parnell, S. & Elmqvist, T. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (T. Elmqvist et al. eds.) 1–12 (Springer Netherlands, Dordrecht, 2013).

    Google Scholar 

  6. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 9, 599–608 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Podolsky, D. K. Inflammatory bowel-disease. N. Engl. J. Med. 325, 928–937 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. Love, J. R., Irvine, E. J. & Fedorak, R. N. Quality-of-life in inflammatory bowel-disease. J. Clin. Gastroenterol. 14, 15–19 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. Sands, B. E. Therapy of inflammatory bowel disease. Gastroenterology 118, S68–S82 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 (2012).

    Article  PubMed  Google Scholar 

  13. Rocchi, A. et al. Inflammatory bowel disease: a Canadian burden of illness review. Can. J. Gastroenterol. 26, 811–817 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hammer, T., Nielsen, K. R., Munkholm, P., Burisch, J. & Lynge, E. The Faroese IBD study: incidence of inflammatory bowel diseases across 54 years of population-based data. J. Crohns Colitis 10, 934–942 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Benchimol, E. I. et al. Changing age demographics of inflammatory bowel disease in Ontario, Canada: a population-based cohort study of epidemiology trends. Inflamm. Bowel Dis. 20, (1761–1769 (2014).

    Google Scholar 

  16. Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

    Article  PubMed  Google Scholar 

  17. Benchimol, E. I. et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut 58, (1490–1497 (2009).

    Google Scholar 

  18. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    Article  PubMed  Google Scholar 

  19. Ng, S. C. et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and colitis epidemiology study. Gastroenterology 145, 158–165.e2 (2013).

    Article  PubMed  Google Scholar 

  20. Ng, S. C. et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62, 630–649 (2013).

    Article  PubMed  Google Scholar 

  21. Park, S. J., Kim, W. H. & Cheon, J. H. Clinical characteristics and treatment of inflammatory bowel disease: a comparison of Eastern and Western perspectives. World J. Gastroenterol. 20, 11525–11537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ng, S. C. Emerging leadership lecture: inflammatory bowel disease in Asia: emergence of a “Western” disease. J. Gastroenterol. Hepatol. 30, 440–445 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Tozun, N. et al. Clinical characteristics of inflammatory bowel disease in Turkey a multicenter epidemiologic survey. J. Clin. Gastroenterol. 43, 51–57 (2009).

    Article  PubMed  Google Scholar 

  24. Kirsner, J. B. Historical origins of current IBD concepts. World J. Gastroenterol. 7, 175–184 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McGranahan, G. & Satterthwaite, D. Urbanisation: Concepts and Trends (IIED, 2014).

  26. Soon, S. et al. The relationship between urban environment and the inflammatory bowel diseases: a systematic review and meta-analysis. BMC Gastroenterol. 12, 51 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Benchimol, E. I. et al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study. Am. J. Gastroenterol. 110, 553–563 (2015).

    Article  PubMed  Google Scholar 

  28. Ghione, S. et al. Dramatic increase in incidence of ulcerative colitis and Crohn’s disease (1988–2011): a population-based study of French adolescents. Am. J. Gastroenterol. 113, 265–272 (2018).

    Article  PubMed  Google Scholar 

  29. Ng, W. K., Wong, S. H. & Ng, S. C. Changing epidemiological trends of inflammatory bowel disease in Asia. Intestinal Res. 14, 111–119 (2016).

    Article  Google Scholar 

  30. Ng, S. C. et al. Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut 64, 1063–1071 (2015).

    Article  PubMed  Google Scholar 

  31. Sartor, R. B. & Wu, G. D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152, 327–339.e4 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liu, J. Z. & Anderson, C. A. Genetic studies of Crohn’s disease: past, present and future. Best Pract. Res. Clin. Gastroenterol. 28, 373–386 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kaplan, G. G. & Jess, T. The changing landscape of inflammatory bowel disease: East meets West. Gastroenterology 150, 24–26 (2016).

    Article  PubMed  Google Scholar 

  36. Ng, S. C. et al. Genetics of inflammatory bowel disease in Asia: systematic review and meta-analysis. Inflamm. Bowel Dis. 18, 1164–1176 (2012).

    Article  PubMed  Google Scholar 

  37. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Paun, A. & Danska, J. S. Immuno-ecology: how the microbiome regulates tolerance and autoimmunity. Curr. Opin. Immunol. 37, 34–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Barreiro-de Acosta, M. et al. Emigration to western industrialized countries: a risk factor for developing inflammatory bowel disease. J. Crohns Colitis 5, 566–569 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Probert, C. S. J., Jayanthi, V., Pinder, D., Wicks, A. C. & Mayberry, J. F. Epidemiologic-study of ulcerative proctocolitis in Indian migrants and the indigenous population of Leicestershire. Gut 33, 687–693 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Martinez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Zoetendal, E. G. et al. Distinct microbiotas are present in urban and rural native South Africans, and in African Americans. Gastroenterology 144, S347–S347 (2013).

    Article  Google Scholar 

  48. Benno, Y. et al. Comparison of faecal microflora of elderly persons in rural and urban areas of Japan. Appl. Environ. Microbiol. 55, 1100–1105 (1989).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhang, J. et al. The diversity of intestinal microbiota of Mongolians living in Inner Mongolia, China. Benef. Microbes 4, 319–328 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Tyakht, A. V. et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 4, 2469 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jahns, L., Baturin, A. & Popkin, B. M. Obesity, diet, and poverty: trends in the Russian transition to market economy. Eur. J. Clin. Nutr. 57, 1295–1302 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. Tyakht, A. V., Alexeev, D. G., Popenko, A. S., Kostryukova, E. S. & Govorun, V. M. Rural and urban microbiota: to be or not to be? Gut Microbes 5, 351–356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    Article  PubMed  CAS  Google Scholar 

  55. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Leach, J. Please pass the microbes. Nature 504, 33–33 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).

    Article  PubMed  Google Scholar 

  59. Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in alpha-diversity. Ecosphere 2, 24 (2011).

    Article  Google Scholar 

  61. Stegen, J. C., Lin, X. J., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Browne, H. P., Neville, B. A., Forster, S. C. & Lawley, T. D. Transmission of the gut microbiota: spreading of health. Nat. Rev. Microbiol. 15, 531–543 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bager, P., Simonsen, J., Nielsen, N. M. & Frisch, M. Cesarean section and offspring’s risk of inflammatory bowel disease: a national cohort study. Inflamm. Bowel Dis. 18, 857–862 (2012).

    Article  PubMed  Google Scholar 

  65. Li, Y. et al. Cesarean delivery and risk of inflammatory bowel disease: a systematic review and meta-analysis. Scand. J. Gastroenterol. 49, 834–844 (2014).

    Article  PubMed  Google Scholar 

  66. Klement, E., Cohen, R. V., Boxman, J., Joseph, A. & Reif, S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis(1–3). Am. J. Clin. Nutr. 80, 1342–1352 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. Abegunde, A. T., Muhammad, B. H., Bhatti, O. & Ali, T. Environmental risk factors for inflammatory bowel diseases: evidence based literature review. World J. Gastroenterol. 22, 6296–6317 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Malekzadeh, F. et al. Crohn’s disease and early exposure to domestic refrigeration. PLoS ONE 4, e4288 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Forbes, A. & Kalantzis, T. Crohn’s disease: the cold chain hypothesis. Int. J. Colorectal Dis. 21, 399–401 (2006).

    Article  PubMed  Google Scholar 

  70. Korzenik, J. R. Past and current theories of etiology of IBD — toothpaste, worms, and refrigerators. J. Clin. Gastroenterol. 39, S59–S65 (2005).

    Article  PubMed  Google Scholar 

  71. Yin, W. Y. et al. Inverse association between poor oral health and inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 15, 525–531 (2017).

    Article  PubMed  Google Scholar 

  72. Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Sullivan, S. N. Hypothesis revisited: toothpaste and the cause of Crohn’s disease. Lancet 336, 1096–1097 (1990).

    Article  PubMed  CAS  Google Scholar 

  74. Albenberg, L. G. & Wu, G. D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146, 1564–1572 (2014).

    Article  PubMed  CAS  Google Scholar 

  75. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Carrillo-Larco, R. M. et al. Obesity risk in rural, urban and rural-to-urban migrants: prospective results of the PERU MIGRANT study. Int. J. Obes. 40, 181–185 (2016).

    Article  CAS  Google Scholar 

  77. Conlon, M. A. & Bird, A. R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17–44 (2015).

    Article  CAS  Google Scholar 

  78. Agus, A. et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 6, 19032 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Turnbaugh, P. J., Baeckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Statovci, D., Aguilera, M., MacSharry, J. & Melgar, S. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 8, 838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

    Article  PubMed  CAS  Google Scholar 

  86. Rigoni, R. et al. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J. Exp. Med. 213, 355–375 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Negroni, A. et al. Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 18, 913–924 (2012).

    Article  PubMed  Google Scholar 

  88. Munyaka, P. M., Sepehri, S., Ghia, J. E. & Khafipour, E. Carrageenan gum and Adherent Invasive Escherichia coli in a piglet model of inflammatory bowel disease: impact on intestinal mucosa-associated microbiota. Front. Microbiol 7, 462 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rolhion, N. & Darfeuille-Michaud, A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm. Bowel Dis. 13, 1277–1283 (2007).

    Article  PubMed  Google Scholar 

  90. Simpson, K., Dogan, B., Bitar, P. P., Schukken, Y. & Stanhope, M. Comparative genomics of adherent-invasive Escherichia coli (AIEC) associated with Crohn’s disease. Inflamm. Bowel Dis. 17, S1 (2011).

    Article  Google Scholar 

  91. Shivashankar, R., Beauvais, J. C. & Lewis, J. D. The relationship of regional diets with global incidence rates of inflammatory bowel disease. Gastroenterology 152, S975–S976 (2017).

    Article  Google Scholar 

  92. El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).

    Article  PubMed  CAS  Google Scholar 

  93. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–U208 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Griffin, N. W. et al. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe 21, 84–96 (2017).

    Article  PubMed  CAS  Google Scholar 

  95. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Zou, J. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53.e4 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Cani, P. D. Dietary emulsifiers-sweepers of the gut lining? Nat. Rev. Endocrinol. 11, 319–320 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    Article  PubMed  Google Scholar 

  101. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. Ruiz, P. A. et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66, 1216–1224 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell. Metab. 20, 779–786 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Galvez, J., Rodriguez-Cabezas, M. E. & Zarzuelo, A. Effects of dietary fiber on inflammatory bowel disease. Mol. Nutr. Food Res. 49, 601–608 (2005).

    Article  PubMed  Google Scholar 

  105. Pituch-Zdanowska, A., Banaszkiewicz, A. & Albrecht, P. The role of dietary fibre in inflammatory bowel disease. Przeglad Gastroenterol. 10, 135 (2015).

    CAS  Google Scholar 

  106. Chiba, M., Tsuji, T., Nakane, K. & Komatsu, M. High amount of dietary fiber not harmful but favorable for Crohn disease. Perm. J. 19, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gong, P. et al. Urbanisation and health in China. Lancet 379, 843–852 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang, H. X. et al. Antibiotics detected in urines and adipogenesis in school children. Environ. Int. 89–90, 204–211 (2016).

    Article  PubMed  CAS  Google Scholar 

  109. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).

    Article  PubMed  CAS  Google Scholar 

  110. Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, 2383–2400 (2008).

    Article  CAS  Google Scholar 

  112. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    Article  PubMed  Google Scholar 

  113. De La Cochetiere, M. F. et al. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol. 43, 5588–5592 (2005).

    Article  CAS  Google Scholar 

  114. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 7, 456–456 (2013).

    Article  PubMed Central  Google Scholar 

  115. Molodecky, N. A. & Kaplan, G. G. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol. 6, 339 (2010).

    Google Scholar 

  116. Ko, Y. et al. Inflammatory bowel disease environmental risk factors: a population-based case-control study of Middle Eastern migration to Australia. Clin. Gastroenterol. Hepatol. 13, 1453–1463.e1 (2015).

    Article  PubMed  Google Scholar 

  117. Leong, R. W., Mitrev, N. & Ko, Y. N. Hygiene hypothesis: is the evidence the same all over the world? Dig. Dis. 34, 35–42 (2016).

    Article  PubMed  Google Scholar 

  118. Francino, M. P. Early development of the gut microbiota and immune health. Pathogens 3, 769–790 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl Med. 8, 343ra82 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Turta, O. & Rautava, S. Antibiotics, obesity and the link to microbes — what are we doing to our children? BMC Med. 14, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pihl, A. F. et al. The role of the gut microbiota in childhood obesity. Childhood Obes. 12, 292–299 (2016).

    Article  Google Scholar 

  123. Candon, S. et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS ONE 10, e0125448 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Scheer, S. et al. Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation. J. Leukoc. Biol. 101, 893–900 (2017).

    Article  PubMed  CAS  Google Scholar 

  125. Schulfer, A. & Blaser, M. J. Risks of antibiotic exposures early in life on the developing microbiome. PLoS Pathog. 11, e1004903 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yamamoto-Hanada, K., Yang, L. M., Narita, M., Saito, H. & Ohya, Y. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann. Allergy Asthma Immunol. 119, 54–58 (2017).

    Article  PubMed  CAS  Google Scholar 

  127. Ramakrishna, B. S. et al. Hygiene factors in India and the US in early childhood influence the subsequent development of Crohn’s disease but not ulcerative colitis: a large case controlled study in two countries. Gastroenterology 142, S789 (2012).

    Article  Google Scholar 

  128. Card, T., Logan, R. F. A., Rodrigues, L. C. & Wheeler, J. G. Antibiotic use and the development of Crohn’s disease. Gut 53, 246–250 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Hildebrand, H., Malmborg, P., Askling, J., Ekbom, A. & Montgomery, S. M. Early-life exposures associated with antibiotic use and risk of subsequent Crohn’s disease. Scand. J. Gastroenterol. 43, 961–966 (2008).

    Article  PubMed  CAS  Google Scholar 

  130. Mai, V. et al. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS ONE 8, e52876 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mai, V. et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS ONE 6, e20647 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Deshpande, G., Rao, S., Patole, S. & Bulsara, M. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125, 921–930 (2010).

    Article  PubMed  Google Scholar 

  133. Kenyon, S. L., Taylor, D. J., Tarnow-Mordi, W. & Grp, O. C. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. Lancet 357, 979–988 (2001).

    Article  PubMed  CAS  Google Scholar 

  134. Bisgaard, H. et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 128, 646–U318 (2011).

    Article  PubMed  Google Scholar 

  135. Abrahamsson, T. R. et al. Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 129, 434–U244 (2012).

    Article  PubMed  Google Scholar 

  136. McKeever, T. M. et al. Early exposure to infections and antibiotics and the incidence of allergic disease: A birth cohort study with the West Midlands General Practice Research Database. J. Allergy Clin. Immunol. 109, 43–50 (2002).

    Article  PubMed  Google Scholar 

  137. Kozyrskyj, A. L., Ernst, P. & Becker, A. B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 (2007).

    Article  PubMed  Google Scholar 

  138. Risnes, K. R., Belanger, K., Murk, W. & Bracken, M. B. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011).

    Article  PubMed  Google Scholar 

  139. Samet, J. M. & Gruskin, S. Air pollution, health, and human rights. Lancet. Respir. Med. 3, 98 (2015).

    Article  PubMed  Google Scholar 

  140. Franklin, B. A., Brook, R. & Pope, C. A. Air pollution and cardiovascular disease. Curr. Problems Cardiol. 40, 207–238 (2015).

    Article  Google Scholar 

  141. Kaplan, G. G. et al. The inflammatory bowel diseases and ambient air pollution: a novel association. Am. J. Gastroenterol. 105, 2412–2419 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ananthakrishnan, A. N., McGinley, E. L., Binion, D. G. & Saeian, K. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm. Bowel Dis. 17, 1138–1145 (2011).

    Article  PubMed  Google Scholar 

  143. To, N., Gracie, D. J. & Ford, A. C. The importance of smoking cessation in improving disease course in Crohn’s disease. Am. J. Gastroenterol. 111, 1198–1198 (2016).

    Article  PubMed  Google Scholar 

  144. Nunes, T. et al. Impact of smoking cessation on the clinical course of Crohn’s disease under current therapeutic algorithms: a multicenter prospective study. Am. J. Gastroenterol. 111, 411–419 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Johnson, G. J., Cosnes, J. & Mansfield, J. C. Review article: Smoking cessation as primary therapy to modify the course of Crohn’s disease. Aliment. Pharmacol. Ther. 21, 921–931 (2005).

    Article  PubMed  CAS  Google Scholar 

  146. Benjamin, J. L. et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm. Bowel Dis. 18, 1092–1100 (2012).

    Article  PubMed  Google Scholar 

  147. Van de Wiele, T. et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ. Health Persp. 118, 1004 (2010).

    Article  CAS  Google Scholar 

  148. Van de Wiele, T. et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ. Health Persp. 113, 6–10 (2005).

    Article  CAS  Google Scholar 

  149. Sawyer, K., Mundandhara, S., Ghio, A. J. & Madden, M. C. The effects of ambient particulate matter on human alveolar macrophage oxidative and inflammatory responses. J. Toxicol. Environ. Health A 73, 41–57 (2010).

    Article  PubMed  CAS  Google Scholar 

  150. van Eeden, S. F. et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate Matter air pollutants (PM10). Am. J. Respir. Crit. Care Med. 164, 826–830 (2001).

    Article  PubMed  Google Scholar 

  151. Rickert, D. E., Butterworth, B. E. & Popp, J. A. Dinitrotoluene — acute toxicity, oncogenicity, genotoxicity, and metabolism. CRC Crit. Rev. Toxicol. 13, 217–234 (1984).

    Article  CAS  Google Scholar 

  152. Rickert, D. E., Long, R. M., Krakowka, S. & Dent, J. G. Metabolism and excretion of 2,4-dinitrotoluene-C-14 in conventional and axenic Fischer-344 rats. Toxicol. Appl. Pharmacol. 59, 574–579 (1981).

    Article  PubMed  CAS  Google Scholar 

  153. Yim, Y. J., Seo, J., Kang, S. I., Ahn, J. H. & Hur, H. G. Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch. Environ. Contamin. Toxicol. 54, 406–411 (2008).

    Article  CAS  Google Scholar 

  154. Joly, C. et al. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME (R)) and in the rat. Environ. Sci. Poll. Res. 20, 2726–2734 (2013).

    Article  CAS  Google Scholar 

  155. Fazeli, M., Hassanzadeh, P. & Alaei, S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum. Exp. Toxicol. 30, 152–159 (2011).

    Article  PubMed  CAS  Google Scholar 

  156. Breton, J. et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Lu, K. et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ. Health Persp. 122, 284–291 (2014).

    Google Scholar 

  158. Xu, H. Y., Heinze, T. M., Chen, S. W., Cerniglia, C. E. & Chen, H. Z. Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (Sudan dyes) by human intestinal microflora. Appl. Environ. Microbiol. 73, 7759–7762 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zheng, X. et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl Med. 5, 172ra22 (2013).

    PubMed  Google Scholar 

  160. Kish, L. et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS ONE 8, e62220 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  PubMed  CAS  Google Scholar 

  162. Choi, J. J. et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Persp. 121, 725–730 (2013).

    Article  Google Scholar 

  163. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    Article  PubMed  Google Scholar 

  164. Russell, S. L. & Finlay, B. B. The impact of gut microbes in allergic diseases. Curr. Opin. Gastroenterol. 28, 563–569 (2012).

    Article  PubMed  Google Scholar 

  165. Gascon, M., Morales, E., Sunyer, J. & Vrijheid, M. Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ. Int. 52, 51–65 (2013).

    Article  PubMed  CAS  Google Scholar 

  166. Menard, S. et al. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A. FASEB J. 28, 4893–4900 (2014).

    Article  PubMed  CAS  Google Scholar 

  167. Belles-Isles, M., Ayotte, P., Dewailly, E., Weber, J. P. & Roy, R. Cord blood lymphocyte functions in newborns from a remote maritime population exposed to organochlorines and methylmercury. J. Toxicol. Environ. Health A 65, 165–182 (2002).

    Article  PubMed  CAS  Google Scholar 

  168. MacGillivray, D. M. & Kollmann, T. R. The role of environmental factors in modulating immune responses in early life. Front. Immunol. 5, 434 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. de Chambrun, G. P. et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol. 7, 589–601 (2014).

    Article  CAS  Google Scholar 

  170. Benchimol, E. I. et al. Rural and urban residence during early life is associated with a lower risk of inflammatory bowel disease: a population-based inception and birth cohort study. Am. J. Gastroenterol. 112, 1412–1422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  PubMed  CAS  Google Scholar 

  172. Rakoff-Nahoum, S. & Medzhitov, R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol. 1, S10–S14 (2008).

    Article  PubMed  CAS  Google Scholar 

  173. Crabbe, P. A., Nash, D. R., Bazin, H., Eyssen, H. & Heremans, J. F. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab. Invest. 22, 448–457 (1970).

    PubMed  CAS  Google Scholar 

  174. El Aidy, S., Hooiveld, G., Tremaroli, V., Bäckhed, F. & Kleerebezem, M. The gut microbiota and mucosal homeostasis: colonized at birth or at adulthood, does it matter? Gut Microbes 4, 118–124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  PubMed  CAS  Google Scholar 

  176. Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Tumwine, J. K. et al. Sanitation and hygiene in urban and rural households in East Africa. Int. J. Environ. Health Res. 13, 107–115 (2003).

    Article  PubMed  Google Scholar 

  178. Chaudhuri, S. & Roy, M. Rural-urban spatial inequality in water and sanitation facilities in India: a cross-sectional study from household to national level. Appl. Geogr. 85, 27–38 (2017).

    Article  Google Scholar 

  179. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Bach, J. F. Mechanisms of disease: The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  181. von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nat. Rev. Immunol. 10, 861–868 (2010).

    Article  CAS  Google Scholar 

  182. de Aguero, M. G. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1301 (2016).

    Article  CAS  Google Scholar 

  183. Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

    Article  PubMed  CAS  Google Scholar 

  184. Grindstaff, J. L., Brodie, E. D. & Ketterson, E. D. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc. R. Soc. B Biol Sci. 270, 2309–2319 (2003).

    Article  Google Scholar 

  185. van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Hu, J. et al. Infants born to mothers with inflammatory bowel disease exhibit distinct microbiome features that persist up to 3 months of life. Gastroenterology 152, S193 (2017).

    Article  Google Scholar 

  187. Zeissig, S. & Blumberg, R. S. Commensal microbial regulation of natural killer T cells at the frontiers of the mucosal immune system. FEBS Lett. 588, 4188–4194 (2014).

    Article  PubMed  CAS  Google Scholar 

  188. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. An, D. D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Chassin, C. et al. miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8, 358–368 (2010).

    Article  PubMed  CAS  Google Scholar 

  191. Stockinger, S., Hornef, M. W. & Chassin, C. Establishment of intestinal homeostasis during the neonatal period. Cell. Mol. Life Sci. 68, 3699–3712 (2011).

    Article  PubMed  CAS  Google Scholar 

  192. Fendrick, A. M., Monto, A. S., Nightengale, B. & Sarnes, M. The economic burden of non–influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med. 163, 487–494 (2003).

    Article  PubMed  Google Scholar 

  193. Kosek, M., Bern, C. & Guerrant, R. L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull. World Health Organiz. 81, 197–204 (2003).

    Google Scholar 

  194. Vernacchio, L. et al. Diarrhea in American infants and young children in the community setting: incidence, clinical presentation and microbiology. Pediatr. Infect. Dis. J. 25, 2–7 (2006).

    Article  PubMed  Google Scholar 

  195. da Fonseca, D. M. et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Randolph, G. J. et al. Lymphoid aggregates remodel lymphatic collecting vessels that serve mesenteric lymph nodes in Crohn disease. Am. J. Pathol. 186, 3066–3073 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Ogilvie, L. A. & Jones, B. V. The human gut virome: a multifaceted majority. Front. Microbiol. 6, 918 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lecuit, M. & Eloit, M. The human virome: new tools and concepts. Trends Microbiol. 21, 510–515 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  200. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable loci in the human gut virome. Proc. Natl Acad. Sci. USA 109, 3962–3966 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Waller, A. S. et al. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J. 8, 1391–1402 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Perez-Brocal, V. et al. Study of the viral and microbial communities associated with Crohn’s disease: a metagenomic approach. Clin. Transl Gastroenterol. 4, e36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Wagner, J. et al. Bacteriophages in gut samples from pediatric Crohn’s disease patients: metagenomic analysis using 454 Pyrosequencing. Inflamm. Bowel Dis. 19, 1598–1608 (2013).

    Article  PubMed  Google Scholar 

  207. Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).

    Article  PubMed  CAS  Google Scholar 

  208. Kim, M. S. & Bae, J. W. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ. Microbiol. 18, 1498–1510 (2016).

    Article  PubMed  CAS  Google Scholar 

  209. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–U223 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Barr, J. et al. Bacteriophage adhered to mucus provide a novel mucosal immune system [abstract]. J. Immunol. 190 (Suppl), P3166 (2013).

    Google Scholar 

  212. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  PubMed  CAS  Google Scholar 

  213. Richard, M. L., Lamas, B., Liguori, G., Hoffmann, T. W. & Sokol, H. Gut fungal microbiota: the yin and yang of inflammatory bowel disease. Inflamm. Bowel Dis. 21, 656–665 (2015).

    Article  PubMed  Google Scholar 

  214. Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 197, 972–980 (2008).

    Article  PubMed  CAS  Google Scholar 

  215. Chen, X. H. et al. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS ONE 8, e64227 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Jawhara, S. & Poulain, D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med. Mycol. 45, 691–700 (2007).

    Article  PubMed  CAS  Google Scholar 

  217. Zwolinska-Wcislo, M. et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J. Physiol. Pharmacol. 60, 107–118 (2009).

    PubMed  CAS  Google Scholar 

  218. Wheeler, M. L. et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19, 865–873 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Sokol, H. et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology 145, 591–601 (2013).

    Article  PubMed  CAS  Google Scholar 

  221. Cao, Z. F. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715–726 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Angebault, C. et al. Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J. Infect. Dis. 208, 1705–1716 (2013).

    Article  PubMed  Google Scholar 

  223. Newbound, M., Mccarthy, M. A. & Lebel, T. Fungi and the urban environment: a review. Landscape Urban Plann. 96, 138–145 (2010).

    Article  Google Scholar 

  224. Arnolds, E. Decline of ectomycorrhizal fungi in europe. Agric. Ecosyst. Environ. 35, 209–244 (1991).

    Article  Google Scholar 

  225. O’gorman, C. M. & Fuller, H. T. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospher. Environ. 42, 4355–4368 (2008).

    Article  CAS  Google Scholar 

  226. Kurup, V. P., Shen, H. D. & Banerjee, B. Respiratory fungal allergy. Microbes Infect. 2, 1101–1110 (2000).

    Article  PubMed  CAS  Google Scholar 

  227. Conti, M. E. & Cecchetti, G. Biological monitoring: lichens as bioindicators of air pollution assessment — a review. Environ. Poll. 114, 471–492 (2001).

    Article  CAS  Google Scholar 

  228. Joshi, S. R. Influence of roadside pollution on the phylloplane microbial community of Alnus nepalensis (Betulaceae). Revista De Biol. Trop. 56, 1521–1529 (2008).

    CAS  Google Scholar 

  229. Pasanen, A. L., Kalliokoski, P., Pasanen, P., Salmi, T. & Tossavainen, A. Fungi carried from farmers work into farm homes. Am. Industrial Hyg. Assoc. J. 50, 631–633 (1989).

    Article  CAS  Google Scholar 

  230. Oliveira, M. et al. Outdoor allergenic fungal spores: comparison between an urban and a rural area in northern Portugal. J. Invest. Allergol. Clin. Immunol. 20, 117–128 (2010).

    CAS  Google Scholar 

  231. Kasprzyk, I. & Worek, M. Airborne fungal spores in urban and rural environments in Poland. Aerobiologia 22, 169–176 (2006).

    Article  Google Scholar 

  232. Weinstock, J. V. & Elliott, D. E. Helminths and the IBD Hygiene Hypothesis. Inflamm. Bowel Dis. 15, 128–133 (2009).

    Article  PubMed  Google Scholar 

  233. Weinstock, J. V. et al. The possible link between de-worming and the emergence of immunological disease. J. Lab. Clin. Med. 139, 334–338 (2002).

    Article  PubMed  Google Scholar 

  234. Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Yang, X. D. et al. Excretory/secretory products from Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice. PLoS One 9, e96454 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Motomura, Y. et al. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin. Exp. Immunol. 155, 88–95 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Ruyssers, N. E. et al. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm. Bowel Dis. 15, 491–500 (2009).

    Article  PubMed  Google Scholar 

  238. Broadhurst, M. J. et al. IL-22+ CD4+ T cells are associated with therapeutic Trichuris trichiura infection in an ulcerative colitis patient. Sci. Transl Med. 2, 60ra88 (2010).

    Article  PubMed  CAS  Google Scholar 

  239. Elliott, D. E. et al. Colonization with Heligmosomoides polygyrus suppresses mucosal IL-17 production. J. Immunol. 181, 2414–2419 (2008).

    Article  PubMed  CAS  Google Scholar 

  240. Hang, L. et al. Heligmosomoides polygyrus bakeri infection activates colonic Foxp3+ T cells enhancing their capacity to prevent colitis. J. Immunol. 191, 1927–1934 (2013).

    Article  PubMed  CAS  Google Scholar 

  241. Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8, e2880 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Stepek, G. et al. Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES62, is stage specific. Parasitology 125, 155–164 (2002).

    Article  PubMed  CAS  Google Scholar 

  243. Harnett, W. & Harnett, M. M. Filarial nematode secreted product ES-62 is an anti-inflammatory agent: therapeutic potential of small molecule derivatives and ES-62 peptide mimetics. Clin. Exp. Pharmacol. Physiol. 33, 511–518 (2006).

    Article  PubMed  CAS  Google Scholar 

  244. Helmby, H. Human helminth therapy to treat inflammatory disorders- where do we stand? BMC Immunol. 16, 12 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Summers, R. W., Elliott, D. E., Urban, J. F., Thompson, R. A. & Weinstock, J. V. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128, 825–832 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.C.N. and M.A.K. are supported by The Helmsley Charitable Trust through the ENIGMA study. S.C.N. and T.Z. are supported by a seed fund for Gut Microbiome Research provided by the Faculty of Medicine, The Chinese University of Hong Kong. The authors also thank F. K. L. Chan, The Chinese University of Hong Kong, China, for his intellectual input into this article.

Author information

Authors and Affiliations

Authors

Contributions

T.Z. and S.C.N. devised the concept, acquired data and wrote the manuscript. M.A.K. and J.F.C. provided critical revision of the manuscript and important intellectual content.

Corresponding author

Correspondence to Siew C. Ng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, T., Kamm, M.A., Colombel, JF. et al. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 15, 440–452 (2018). https://doi.org/10.1038/s41575-018-0003-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0003-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing