Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of human telomere biology disorders

Abstract

Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Causes and consequences of telomere dysfunction in normal ageing and telomere biology disorders.
Fig. 2: Factors associated with telomere biology disorders.
Fig. 3: Specific genotype–phenotype features in TBDs.
Fig. 4: Mechanisms of somatic genetic rescue in telomere biology disorders.

Similar content being viewed by others

References

  1. de Lange, T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 52, 223–247 (2018).

    Article  Google Scholar 

  2. Gilson, E. & Geli, V. How telomeres are replicated. Nat. Rev. Mol. Cell Biol. 8, 825–838 (2007).

    Article  CAS  Google Scholar 

  3. Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    Article  CAS  Google Scholar 

  4. Bertuch, A. A. The molecular genetics of the telomere biology disorders. RNA Biol. 13, 696–706 (2016).

    Article  Google Scholar 

  5. Alder, J. K. & Armanios, M. Telomere-mediated lung disease. Physiol. Rev. 102, 1703–1720 (2022).

    Article  CAS  Google Scholar 

  6. Demanelis, K. et al. Determinants of telomere length across human tissues. Science 369, eaaz6876 (2020).

    Article  Google Scholar 

  7. Blasco, M. A. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J. 24, 1095–1103 (2005).

    Article  CAS  Google Scholar 

  8. Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16, 1723–1730 (1998).

    Article  CAS  Google Scholar 

  9. Kipling, D. & Cooke, H. J. Hypervariable ultra-long telomeres in mice. Nature 347, 400–402 (1990).

    Article  CAS  Google Scholar 

  10. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  Google Scholar 

  11. Lai, T. P., Wright, W. E. & Shay, J. W. Comparison of telomere length measurement methods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20160451 (2018).

    Article  Google Scholar 

  12. Alter, B. P. et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 110, 1439–1447 (2007).

    Article  CAS  Google Scholar 

  13. Alder, J. K. et al. Diagnostic utility of telomere length testing in a hospital-based setting. Proc. Natl Acad. Sci. USA 115, E2358–E2365 (2018). By examining telomere length and clinical features of a cohort of 100 patients with TBD, this work demonstrated that the degree of telomere shortening inversely correlated with the age at diagnosis and the TBD phenotype.

    Article  Google Scholar 

  14. Roake, C. M. & Artandi, S. E. Regulation of human telomerase in homeostasis and disease. Nat. Rev. Mol. Cell Biol. 21, 384–397 (2020).

    Article  CAS  Google Scholar 

  15. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  Google Scholar 

  16. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998). This study demonstrates that ectopic expression of TERT is sufficient to immortalize human somatic cells.

    Article  CAS  Google Scholar 

  17. Nault, J. C., Ningarhari, M., Rebouissou, S. & Zucman-Rossi, J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 544–558 (2019).

    Article  Google Scholar 

  18. Lorbeer, F. K. & Hockemeyer, D. TERT promoter mutations and telomeres during tumorigenesis. Curr. Opin. Genet. Dev. 60, 56–62 (2020).

    Article  CAS  Google Scholar 

  19. Greider, C. W. Telomerase is processive. Mol. Cell. Biol. 11, 4572–4580 (1991).

    CAS  Google Scholar 

  20. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    Article  CAS  Google Scholar 

  21. Tsakiri, K. D. et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl Acad. Sci. USA 104, 7552–7557 (2007).

    Article  CAS  Google Scholar 

  22. Du, H. Y. et al. Complex inheritance pattern of dyskeratosis congenita in two families with 2 different mutations in the telomerase reverse transcriptase gene. Blood 111, 1128–1130 (2008).

    Article  CAS  Google Scholar 

  23. Aspesi, A. et al. Compound heterozygosity for two new TERT mutations in a patient with aplastic anemia. Pediatr. Blood Cancer 55, 550–553 (2010).

    Article  Google Scholar 

  24. Gramatges, M. M., Qi, X., Sasa, G. S., Chen, J. J. & Bertuch, A. A. A homozygous telomerase T-motif variant resulting in markedly reduced repeat addition processivity in siblings with Hoyeraal Hreidarsson syndrome. Blood 121, 3586–3593 (2013).

    Article  CAS  Google Scholar 

  25. Niaz, A. et al. Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder. Blood Adv. 6, 3779–3791 (2022).

    Article  CAS  Google Scholar 

  26. Cepni, E., Satkin, N. B., Moheb, L. A., Rocha, M. E. & Kayserili, H. Biallelic TERT variant leads to Hoyeraal-Hreidarsson syndrome with additional dyskeratosis congenita findings. Am. J. Med. Genet. Part A 188, 1226–1232 (2022).

    Article  CAS  Google Scholar 

  27. Stockklausner, C. et al. A novel autosomal recessive TERT T1129P mutation in a dyskeratosis congenita family leads to cellular senescence and loss of CD34+ hematopoietic stem cells not reversible by mTOR-inhibition. Aging 7, 911–927 (2015).

    Article  CAS  Google Scholar 

  28. Marrone, A. et al. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 110, 4198–4205 (2007).

    Article  CAS  Google Scholar 

  29. Roake, C. M. et al. Disruption of telomerase RNA maturation kinetics precipitates disease. Mol. Cell 74, 688–700.e683 (2019). This work demonstrates that a feedforward pathway of hTR oligoadenylation by PADP5 and deadenylation by PARN regulates the rate of hTR maturation.

    Article  CAS  Google Scholar 

  30. Qin, J. & Autexier, C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol. 18, 305–315 (2021).

    Article  CAS  Google Scholar 

  31. Tseng, C. K. et al. Human telomerase RNA processing and quality control. Cell Rep. 13, 2232–2243 (2015). This work demonstrates that the nuclear exosome competes with PARN to regulate the maturation of hTR molecule.

    Article  CAS  Google Scholar 

  32. Nguyen, T. H. D. et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557, 190–195 (2018). Using cryo-electron microscopy, this study reveals a flexible bi-lobed structure of human telomerase holoenzyme bound to its DNA substrate and provides new insights into the impact of disease-associated dyskerin mutations.

    Article  CAS  Google Scholar 

  33. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    Article  CAS  Google Scholar 

  34. Collopy, L. C. et al. Triallelic and epigenetic-like inheritance in human disorders of telomerase. Blood 126, 176–184 (2015).

    Article  CAS  Google Scholar 

  35. Egan, E. D. & Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA 18, 1747–1759 (2012).

    Article  CAS  Google Scholar 

  36. Shukla, S., Schmidt, J. C., Goldfarb, K. C., Cech, T. R. & Parker, R. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat. Struct. Mol. Biol. 23, 286–292 (2016).

    Article  CAS  Google Scholar 

  37. Knight, S. W. et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am. J. Hum. Genet. 65, 50–58 (1999).

    Article  CAS  Google Scholar 

  38. Ghanim, G. E. et al. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 593, 449–453 (2021).

    Article  CAS  Google Scholar 

  39. Alder, J. K. et al. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene. Hum. Mutat. 34, 1481–1485 (2013).

    Article  CAS  Google Scholar 

  40. Xu, J. et al. Investigation of chromosome X inactivation and clinical phenotypes in female carriers of DKC1 mutations. Am. J. Hematol. 91, 1215–1220 (2016).

    Article  CAS  Google Scholar 

  41. Walne, A. J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    Article  CAS  Google Scholar 

  42. Trahan, C., Martel, C. & Dragon, F. Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs. Hum. Mol. Genet. 19, 825–836 (2010).

    Article  CAS  Google Scholar 

  43. Kannengiesser, C. et al. First heterozygous NOP10 mutation in familial pulmonary fibrosis. Eur. Respir. J. 55, 1902465 (2020).

    Article  CAS  Google Scholar 

  44. Manali, E. D. et al. Genotype–phenotype relationships in inheritable idiopathic pulmonary fibrosis: a Greek national cohort study. Respiration 101, 531–543 (2022).

    Article  CAS  Google Scholar 

  45. Vulliamy, T. et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl Acad. Sci. USA 105, 8073–8078 (2008).

    Article  CAS  Google Scholar 

  46. Benyelles, M. et al. NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and Hoyeraal-Hreidarsson syndrome. Hum. Mol. Genet. 29, 907–922 (2020).

    Article  CAS  Google Scholar 

  47. Balogh, E. et al. Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc. Natl Acad. Sci. USA 117, 15137–15147 (2020).

    Article  CAS  Google Scholar 

  48. Venteicher, A. S. et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644–648 (2009).

    Article  CAS  Google Scholar 

  49. Chen, L. et al. An activity switch in human telomerase based on RNA conformation and shaped by TCAB1. Cell 174, 218–230 e213 (2018).

    Article  CAS  Google Scholar 

  50. Zhong, F. et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 25, 11–16 (2010).

    Article  Google Scholar 

  51. Shao, Y. et al. A unique homozygous WRAP53 Arg298Trp mutation underlies dyskeratosis congenita in a Chinese Han family. BMC Med. Genet. 19, 40 (2018).

    Article  Google Scholar 

  52. Bergstrand, S. et al. Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis. 11, 238 (2020).

    Article  CAS  Google Scholar 

  53. Brailovski, E. et al. Previously unreported WRAP53 gene variants in a patient with dyskeratosis congenita. Ann. Hematol. 101, 907–909 (2022).

    Article  CAS  Google Scholar 

  54. Freund, A. et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 159, 1389–1403 (2014).

    Article  CAS  Google Scholar 

  55. Henriksson, S. et al. The scaffold protein WRAP53beta orchestrates the ubiquitin response critical for DNA double-strand break repair. Genes Dev. 28, 2726–2738 (2014).

    Article  Google Scholar 

  56. Stanley, S. E. et al. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci. Transl. Med. 8, 351ra107 (2016).

    Article  Google Scholar 

  57. Hoareau-Aveilla, C., Bonoli, M., Caizergues-Ferrer, M. & Henry, Y. hNaf1 is required for accumulation of human box H/ACA snoRNPs, scaRNPs, and telomerase. RNA 12, 832–840 (2006).

    Article  CAS  Google Scholar 

  58. Nguyen, D. et al. A polyadenylation-dependent 3′ end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep. 13, 2244–2257 (2015).

    Article  CAS  Google Scholar 

  59. Boyraz, B. et al. Posttranscriptional manipulation of TERC reverses molecular hallmarks of telomere disease. J. Clin. Invest. 126, 3377–3382 (2016).

    Article  Google Scholar 

  60. Moon, D. H. et al. Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component. Nat. Genet. 47, 1482–1488 (2015).

    Article  CAS  Google Scholar 

  61. Dhanraj, S. et al. Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN). J. Med. Genet. 52, 738–748 (2015).

    Article  CAS  Google Scholar 

  62. Dodson, L. M. et al. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum. Mutat. 40, 2414–2429 (2019).

    Article  CAS  Google Scholar 

  63. Tummala, H. et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J. Clin. Invest. 125, 2151–2160 (2015).

    Article  Google Scholar 

  64. Burris, A. M. et al. Hoyeraal-hreidarsson syndrome due to PARN mutations: fourteen years of follow-up. Pediatr. Neurol. 56, 62–68.e61 (2016).

    Article  Google Scholar 

  65. Benyelles, M. et al. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol. Med. 11, e10201 (2019).

    Article  Google Scholar 

  66. Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    Article  CAS  Google Scholar 

  67. Lata, S. et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. Ann. Intern. Med. 168, 100–109 (2018).

    Article  Google Scholar 

  68. Schmid, M. & Jensen, T. H. Controlling nuclear RNA levels. Nat. Rev. Genet. 19, 518–529 (2018).

    Article  CAS  Google Scholar 

  69. Garland, W. et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol. Cell 82, 1691–1707 (2022).

    Article  CAS  Google Scholar 

  70. Gable, D. L. et al. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev. 33, 1381–1396 (2019).

    Article  CAS  Google Scholar 

  71. Lingaraju, M. et al. The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs. Nat. Commun. 10, 3393 (2019).

    Article  Google Scholar 

  72. Gerlach, P. et al. Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Mol. Cell 82, 2505–2518.e7 (2022).

    Article  CAS  Google Scholar 

  73. Puno, M. R. & Lima, C. D. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 185, 2132–2147.e2126 (2022).

    Article  CAS  Google Scholar 

  74. Najmabadi, H. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63 (2011).

    Article  CAS  Google Scholar 

  75. Schmutz, I. et al. TINF2 is a haploinsufficient tumor suppressor that limits telomere length. eLife 9, e61235 (2020).

    Article  CAS  Google Scholar 

  76. Savage, S. A. et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet. 82, 501–509 (2008).

    Article  CAS  Google Scholar 

  77. Walne, A. J., Vulliamy, T., Beswick, R., Kirwan, M. & Dokal, I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594–3600 (2008).

    Article  CAS  Google Scholar 

  78. Touzot, F. et al. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. J. Allergy Clin. Immunol. 129, 473–482 (2012).

    Article  CAS  Google Scholar 

  79. Karremann, M. et al. Revesz syndrome revisited. Orphanet J. Rare Dis. 15, 299 (2020).

    Article  Google Scholar 

  80. Alder, J. K. et al. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 147, 1361–1368 (2015).

    Article  Google Scholar 

  81. Sasa, G. S., Ribes-Zamora, A., Nelson, N. D. & Bertuch, A. A. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin. Genet. 81, 470–478 (2012).

    Article  CAS  Google Scholar 

  82. Choo, S. et al. Editing TINF2 as a potential therapeutic approach to restore telomere length in dyskeratosis congenita. Blood 140, 608–918 (2022). CRISPR–Cas9 editing of the TINF2 locus in pluripotent stem cells bearing a heterozygous TBD-associated TINF2 mutation demonstrates that the mutant TIN2 protein markedly shortens telomeres via a GoF effect.

    Article  CAS  Google Scholar 

  83. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012). This work demonstrates the crucial role of a patch of residues on the surface of TPP1, known as the TEL patch, in the recruitment and stimulation of telomerase at telomeres.

    Article  CAS  Google Scholar 

  84. Sekne, Z., Ghanim, G. E., van Roon, A. M. & Nguyen, T. H. D. Structural basis of human telomerase recruitment by TPP1–POT1. Science 375, 1173–1176 (2022).

    Article  CAS  Google Scholar 

  85. Kocak, H. et al. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev. 28, 2090–2102 (2014).

    Article  CAS  Google Scholar 

  86. Guo, Y. et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 124, 2767–2774 (2014).

    Article  CAS  Google Scholar 

  87. Bisht, K., Smith, E. M., Tesmer, V. M. & Nandakumar, J. Structural and functional consequences of a disease mutation in the telomere protein TPP1. Proc. Natl Acad. Sci. USA 113, 13021–13026 (2016).

    Article  CAS  Google Scholar 

  88. Hoffman, T. W. et al. Pulmonary fibrosis linked to variants in the ACD gene, encoding the telomere protein TPP1. Eur. Respir. J. 54, 1900809 (2019).

    Article  Google Scholar 

  89. Henslee, G., Williams, C. L., Liu, P. & Bertuch, A. A. Identification and characterization of novel ACD variants: modulation of TPP1 protein level offsets the impact of germline loss-of-function variants on telomere length. Cold Spring Harb. Mol. Case Stud. 7, a005454 (2021).

    Article  CAS  Google Scholar 

  90. Tummala, H. et al. Homozygous OB-fold variants in telomere protein TPP1 are associated with dyskeratosis congenita-like phenotypes. Blood 132, 1349–1353 (2018).

    Article  CAS  Google Scholar 

  91. Graniel, J. V. et al. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci. Alliance 5, e202101208 (2021).

    Article  Google Scholar 

  92. Aoude, L. G. et al. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J. Natl Cancer Inst. 107, dju408 (2015).

    Article  Google Scholar 

  93. Speedy, H. E. et al. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood 128, 2319–2326 (2016).

    Article  CAS  Google Scholar 

  94. Wang, Y. et al. Identification of rare variants predisposing to thyroid cancer. Thyroid 29, 946–955 (2019).

    Article  CAS  Google Scholar 

  95. Wang, F. et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  Google Scholar 

  96. Glousker, G., Briod, A. S., Quadroni, M. & Lingner, J. Human shelterin protein POT1 prevents severe telomere instability induced by homology-directed DNA repair. EMBO J. 39, e104500 (2020).

    Article  CAS  Google Scholar 

  97. Zaug, A. J., Goodrich, K. J., Song, J. J., Sullivan, A. E. & Cech, T. R. Reconstitution of a telomeric replicon organized by CST. Nature https://doi.org/10.1038/s41586-022-04930-8 (2022). In this work, reconstitution of telomere replication in vitro provides new insight into the roles of the CST complex in orchestrating the initiation of C-strand synthesis.

    Article  Google Scholar 

  98. Chen, L. Y., Redon, S. & Lingner, J. The human CST complex is a terminator of telomerase activity. Nature 488, 540–544 (2012).

    Article  CAS  Google Scholar 

  99. Takai, H. et al. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. Genes Dev. 30, 812–826 (2016).

    Article  CAS  Google Scholar 

  100. Kelich, J. et al. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J. Exp. Med. 219, e20211681 (2022).

    Article  CAS  Google Scholar 

  101. Shi, J. et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 46, 482–486 (2014).

    Article  CAS  Google Scholar 

  102. Robles-Espinoza, C. D. et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46, 478–481 (2014).

    Article  CAS  Google Scholar 

  103. Shen, E. et al. POT1 mutation spectrum in tumour types commonly diagnosed among POT1-associated hereditary cancer syndrome families. J. Med. Genet. 57, 664–670 (2020).

    Article  CAS  Google Scholar 

  104. Youds, J. L. et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science 327, 1254–1258 (2010).

    Article  CAS  Google Scholar 

  105. Vannier, J. B. et al. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342, 239–242 (2013).

    Article  CAS  Google Scholar 

  106. Wu, W. et al. RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nat. Struct. Mol. Biol. 27, 424–437 (2020).

    Article  CAS  Google Scholar 

  107. Takedachi, A. et al. SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations. Nat. Struct. Mol. Biol. 27, 438–449 (2020).

    Article  CAS  Google Scholar 

  108. Bjorkman, A. et al. Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes. Dev. 34, 1065–1074 (2020).

    Article  Google Scholar 

  109. Kotsantis, P. et al. RTEL1 regulates G4/R-loops to avert replication-transcription collisions. Cell Rep. 33, 108546 (2020).

    Article  CAS  Google Scholar 

  110. Sarek, G. et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature 575, 523–527 (2019).

    Article  CAS  Google Scholar 

  111. Sarek, G., Vannier, J. B., Panier, S., Petrini, J. H. & Boulton, S. J. TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol. Cell 57, 622–635 (2015).

    Article  CAS  Google Scholar 

  112. Vannier, J. B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012).

    Article  CAS  Google Scholar 

  113. Ghisays, F. et al. RTEL1 influences the abundance and localization of TERRA RNA. Nat. Commun. 12, 3016 (2021).

    Article  Google Scholar 

  114. Schertzer, M. et al. Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA. Nucleic Acids Res. 43, 1834–1847 (2015).

    Article  CAS  Google Scholar 

  115. Walne, A. J., Vulliamy, T., Kirwan, M., Plagnol, V. & Dokal, I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am. J. Hum. Genet. 92, 448–453 (2013).

    Article  CAS  Google Scholar 

  116. Deng, Z. et al. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc. Natl Acad. Sci. USA 110, E3408–E3416 (2013).

    Article  CAS  Google Scholar 

  117. Le Guen, T. et al. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum. Mol. Genet. 22, 3239–3249 (2013).

    Article  Google Scholar 

  118. Ballew, B. J. et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet. 9, e1003695 (2013).

    Article  CAS  Google Scholar 

  119. Ballew, B. J. et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum. Genet. 132, 473–480 (2013).

    Article  CAS  Google Scholar 

  120. Jullien, L. et al. Mutations of the RTEL1 helicase in a Hoyeraal-Hreidarsson syndrome patient highlight the importance of the ARCH domain. Hum. Mutat. 37, 469–472 (2016).

    Article  CAS  Google Scholar 

  121. Touzot, F. et al. Extended clinical and genetic spectrum associated with biallelic RTEL1 mutations. Blood Adv. 1, 36–46 (2016).

    Article  CAS  Google Scholar 

  122. Speckmann, C. et al. Clinical and molecular heterogeneity of RTEL1 deficiency. Front. Immunol. 8, 449 (2017).

    Article  Google Scholar 

  123. Awad, A. et al. Full length RTEL1 is required for the elongation of the single-stranded telomeric overhang by telomerase. Nucleic acids Res. 48, 7239–7251 (2020).

    CAS  Google Scholar 

  124. Cogan, J. D. et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 191, 646–655 (2015).

    Article  CAS  Google Scholar 

  125. Kannengiesser, C. et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur. Respir. J. 46, 474–485 (2015).

    Article  CAS  Google Scholar 

  126. Kropski, J. A. & Loyd, J. E. Telomeres revisited: RTEL1 variants in pulmonary fibrosis. Eur. Respir. J. 46, 312–314 (2015).

    Article  Google Scholar 

  127. Juge, P. A. et al. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis. Eur. Respir. J. 49, 1602314 (2017).

    Article  Google Scholar 

  128. Borie, R. et al. Regulator of telomere length 1 (RTEL1) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. Eur. Respir. J. 53, 1800508 (2019).

    Article  CAS  Google Scholar 

  129. Marsh, J. C. W. et al. Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms. Blood Adv. 2, 36–48 (2018).

    Article  CAS  Google Scholar 

  130. Cardoso, S. R. et al. Myelodysplasia and liver disease extend the spectrum of RTEL1 related telomeropathies. Haematologica 102, e293–e296 (2017).

    Article  CAS  Google Scholar 

  131. Margalef, P. et al. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell 172, 439–453.e414 (2018).

    Article  CAS  Google Scholar 

  132. Bhat, K. P. & Cortez, D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol. 25, 446–453 (2018).

    Article  CAS  Google Scholar 

  133. Audry, J. et al. RPA prevents G-rich structure formation at lagging-strand telomeres to allow maintenance of chromosome ends. EMBO J. 34, 1942–1958 (2015).

    Article  CAS  Google Scholar 

  134. Codd, V. et al. Polygenic basis and biomedical consequences of telomere length variation. Nat. Genet. 53, 1425–1433 (2021).

    Article  CAS  Google Scholar 

  135. Sharma, R. et al. Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood 139, 1039–1051 (2022). This study introduces RPA1 as a TBD gene associated with direct SGR when the germline mutation enhances binding to telomeric DNA.

    Article  CAS  Google Scholar 

  136. Flynn, R. L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    Article  CAS  Google Scholar 

  137. Schmiester, M. & Demuth, I. SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 8, 48398–48409 (2017).

    Article  Google Scholar 

  138. Lenain, C. et al. The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr. Biol. 16, 1303–1310 (2006).

    Article  CAS  Google Scholar 

  139. van Overbeek, M. & de Lange, T. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr. Biol. 16, 1295–1302 (2006).

    Article  Google Scholar 

  140. Quesada, V. et al. Giant tortoise genomes provide insights into longevity and age-related disease. Nat. Ecol. Evol. 3, 87–95 (2019).

    Article  Google Scholar 

  141. Kolora, S. R. R. et al. Origins and evolution of extreme life span in Pacific ocean rockfishes. Science 374, 842–847 (2021).

    Article  CAS  Google Scholar 

  142. Ye, J. et al. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 142, 230–242 (2010).

    Article  CAS  Google Scholar 

  143. Lam, Y. C. et al. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J. 29, 2230–2241 (2010).

    Article  CAS  Google Scholar 

  144. Wu, P., van Overbeek, M., Rooney, S. & de Lange, T. Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol. Cell 39, 606–617 (2010).

    Article  CAS  Google Scholar 

  145. Wu, P., Takai, H. & de Lange, T. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150, 39–52 (2012).

    Article  CAS  Google Scholar 

  146. Taub, M. A. et al. Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genom. 2, 100084 (2022).

    Article  CAS  Google Scholar 

  147. Kermasson, L. et al. Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects. Blood 139, 2427–2440 (2022). This work introduces biallelic mutations in the Apollo gene, DCLRE1B, as a cause of telomere dysfunction and clinical features of TBDs without global reduction in telomere length.

    Article  CAS  Google Scholar 

  148. Akhter, S., Lam, Y. C., Chang, S. & Legerski, R. J. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 9, 1047–1056 (2010).

    Article  CAS  Google Scholar 

  149. Fouquerel, E. et al. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol. Cell 75, 117–130.e116 (2019).

    Article  CAS  Google Scholar 

  150. Baddock, H. T. et al. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res. 49, 9294–9309 (2021).

    Article  CAS  Google Scholar 

  151. Barnes, R. P. et al. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat. Struct. Mol. Biol. 29, 639–652 (2021).

    Article  Google Scholar 

  152. Wan, M., Qin, J., Songyang, Z. & Liu, D. OB fold-containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. J. Biol. Chem. 284, 26725–26731 (2009).

    Article  CAS  Google Scholar 

  153. Miyake, Y. et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206 (2009).

    Article  CAS  Google Scholar 

  154. Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207–218 (2009).

    Article  CAS  Google Scholar 

  155. Zaug, A. J. et al. CST does not evict elongating telomerase but prevents initiation by ssDNA binding. Nucleic Acids Res. 49, 11653–11665 (2021).

    Article  CAS  Google Scholar 

  156. Mirman, Z. et al. 53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature 560, 112–116 (2018).

    Article  CAS  Google Scholar 

  157. Stewart, J. A. et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J. 31, 3537–3549 (2012).

    Article  CAS  Google Scholar 

  158. Wang, F., Stewart, J. & Price, C. M. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. Cell Cycle 13, 3488–3498 (2014).

    Article  CAS  Google Scholar 

  159. Wang, Y. & Chai, W. Pathogenic CTC1 mutations cause global genome instabilities under replication stress. Nucleic Acids Res. 46, 3981–3992 (2018).

    Article  CAS  Google Scholar 

  160. Anderson, B. H. et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat. Genet. 44, 338–342 (2012).

    Article  CAS  Google Scholar 

  161. Polvi, A. et al. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am. J. Hum. Genet. 90, 540–549 (2012).

    Article  CAS  Google Scholar 

  162. Keller, R. B. et al. CTC1 Mutations in a patient with dyskeratosis congenita. Pediatr. Blood Cancer 59, 311–314 (2012).

    Article  Google Scholar 

  163. Walne, A. et al. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 98, 334–338 (2013).

    Article  CAS  Google Scholar 

  164. Lin, H., Gong, L., Zhan, S., Wang, Y. & Liu, A. Novel biallelic missense mutations in CTC1 gene identified in a Chinese family with Coats plus syndrome. J. Neurol. Sci. 382, 142–145 (2017).

    Article  CAS  Google Scholar 

  165. Gu, P. et al. CTC1-STN1 coordinates G- and C-strand synthesis to regulate telomere length. Aging Cell 17, e12783 (2018).

    Article  Google Scholar 

  166. Feng, X., Hsu, S. J., Kasbek, C., Chaiken, M. & Price, C. M. CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res. 45, 4281–4293 (2017).

    Article  CAS  Google Scholar 

  167. Chen, L. Y., Majerska, J. & Lingner, J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev. 27, 2099–2108 (2013).

    Article  CAS  Google Scholar 

  168. Sargolzaeiaval, F. et al. CTC1 mutations in a Brazilian family with progeroid features and recurrent bone fractures. Mol. Genet. Genom. Med. 6, 1148–1156 (2018).

    Article  CAS  Google Scholar 

  169. Simon, A. J. et al. Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J. Exp. Med. 213, 1429–1440 (2016).

    Article  CAS  Google Scholar 

  170. Passi, G. R. et al. An Indian child with Coats plus syndrome due to mutations in STN1. Am. J. Med. Genet. Part. A 182, 2139–2144 (2020).

    Article  CAS  Google Scholar 

  171. Acharya, T. et al. Novel compound heterozygous STN1 variants are associated with Coats plus syndrome. Mol. Genet. Genom. Med. 9, e1708 (2021).

    CAS  Google Scholar 

  172. Himes, R. W. et al. Gastrointestinal hemorrhage: a manifestation of the telomere biology disorders. J. Pediatr. 230, 55–61 e54 (2021).

    Article  CAS  Google Scholar 

  173. Toufektchan, E. et al. Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance. Sci. Adv. 6, eaay3511 (2020).

    Article  CAS  Google Scholar 

  174. Vulliamy, T. J. et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cell Mol. Dis. 34, 257–263 (2005).

    Article  CAS  Google Scholar 

  175. Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 352, 1413–1424 (2005).

    Article  CAS  Google Scholar 

  176. Nachmani, D. et al. Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nat. Genet. 51, 1518–1529 (2019).

    Article  CAS  Google Scholar 

  177. Aspesi, A. & Ellis, S. R. Rare ribosomopathies: insights into mechanisms of cancer. Nat. Rev. Cancer 19, 228–238 (2019).

    Article  CAS  Google Scholar 

  178. Penev, A. et al. Alternative splicing is a developmental switch for hTERT expression. Mol. Cell 81, 2349–2360.e2346 (2021).

    Article  CAS  Google Scholar 

  179. Kim, J. H. et al. De novo mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome. Am. J. Hum. Genet. 99, 711–719 (2016).

    Article  CAS  Google Scholar 

  180. Grozdanov, P. N., Roy, S., Kittur, N. & Meier, U. T. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15, 1188–1197 (2009).

    Article  CAS  Google Scholar 

  181. Bizarro, J. & Meier, U. T. Inherited SHQ1 mutations impair interaction with NAP57/dyskerin, a major target in dyskeratosis congenita. Mol. Genet. Genom. Med. 5, 805–808 (2017).

    Article  CAS  Google Scholar 

  182. Mroczek, S. & Dziembowski, A. U6 RNA biogenesis and disease association. Wiley Interdiscip. Rev. RNA 4, 581–592 (2013).

    Article  CAS  Google Scholar 

  183. Trippe, R. et al. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12, 1494–1504 (2006).

    Article  CAS  Google Scholar 

  184. Wang, L., Clericuzio, C. & Larizza, L. in GeneReviews((R)) (eds M. P. Adam et al.) (1993).

  185. Walne, A. J. et al. Marked overlap of four genetic syndromes with dyskeratosis congenita confounds clinical diagnosis. Haematologica 101, 1180–1189 (2016).

    Article  CAS  Google Scholar 

  186. Shchepachev, V., Wischnewski, H., Missiaglia, E., Soneson, C. & Azzalin, C. M. Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3′-to-5′ RNA exonuclease processing U6 small nuclear RNA. Cell Rep. 2, 855–865 (2012).

    Article  CAS  Google Scholar 

  187. Vulliamy, T. et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet. 36, 447–449 (2004). This is the first report of increasing disease severity and shorter telomeres in succeeding generations in the TBDs.

    Article  CAS  Google Scholar 

  188. Armanios, M. et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc. Natl Acad. Sci. Usa. 102, 15960–15964 (2005).

    Article  CAS  Google Scholar 

  189. Goldman, F. et al. The effect of TERC haploinsufficiency on the inheritance of telomere length. Proc. Natl Acad. Sci. Usa. 102, 17119–17124 (2005).

    Article  CAS  Google Scholar 

  190. Newton, C. A. et al. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive. Eur. Respir. J. 48, 1710–1720 (2016).

    Article  CAS  Google Scholar 

  191. Gutierrez-Rodrigues, F. et al. A novel homozygous RTEL1 variant in a consanguineous Lebanese family: phenotypic heterogeneity and disease anticipation. Hum. Genet. 138, 1323–1330 (2019).

    Article  CAS  Google Scholar 

  192. Fernandez, B. A. et al. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir. Res. 13, 64 (2012).

    Article  CAS  Google Scholar 

  193. Hao, L. Y. et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 123, 1121–1131 (2005).

    Article  CAS  Google Scholar 

  194. Armanios, M. et al. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am. J. Hum. Genet. 85, 823–832 (2009).

    Article  CAS  Google Scholar 

  195. Xing, C. & Garcia, C. K. Epigenetic inheritance of telomere length obscures identification of causative PARN locus. J. Med. Genet. 53, 356–358 (2016).

    Article  CAS  Google Scholar 

  196. van der Vis, J. J. et al. Pulmonary fibrosis in non-mutation carriers of families with short telomere syndrome gene mutations. Respirology 26, 1160–1170 (2021). In a systematic study of 99 families with familial pulmonary fibrosis, the phenomenon of phenocopy is suggested by five individuals who lack the familial TBD gene mutation but developed pulmonary fibrosis.

    Article  Google Scholar 

  197. Alder, J. K. et al. Ancestral mutation in telomerase causes defects in repeat addition processivity and manifests as familial pulmonary fibrosis. PLoS Genet. 7, e1001352 (2011).

    Article  CAS  Google Scholar 

  198. Vulliamy, T. J. & Dokal, I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90, 122–130 (2008).

    Article  CAS  Google Scholar 

  199. Gaysinskaya, V., Stanley, S. E., Adam, S. & Armanios, M. Synonymous mutation in DKC1 causes telomerase RNA insufficiency manifesting as familial pulmonary fibrosis. Chest 158, 2449–2457 (2020).

    Article  CAS  Google Scholar 

  200. van der Vis, J. J., van der Smagt, J. J., Hennekam, F. A. M., Grutters, J. C. & van Moorsel, C. H. M. Pulmonary fibrosis and a TERT founder mutation with a latency period of 300 years. Chest 158, 612–619 (2020).

    Article  Google Scholar 

  201. Mustjoki, S. & Young, N. S. Somatic mutations in “Benign” disease. N. Engl. J. Med. 384, 2039–2052 (2021).

    Article  CAS  Google Scholar 

  202. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  Google Scholar 

  203. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  Google Scholar 

  204. Revy, P., Kannengiesser, C. & Fischer, A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat. Rev. Genet. 20, 582–598 (2019).

    Article  CAS  Google Scholar 

  205. Gutierrez-Rodrigues, F. et al. Pathogenic TERT promoter variants in telomere diseases. Genet. Med. 21, 1594–1602 (2019). This study extends the detection of haematopoietic somatic TERTpam in individuals with TBDs from those with idiopathic pulmonary fibrosis to those with marrow failure and liver disease and demonstrates an association of these somatic mutations with germline variants associated with telomerase deficiency.

    Article  CAS  Google Scholar 

  206. Maryoung, L. et al. Somatic mutations in telomerase promoter counterbalance germline loss-of-function mutations. J. Clin. Invest. 127, 982–986 (2017). This work is the first to demonstrate somatic TERTpam in blood cells of individuals with idiopathic pulmonary fibrosis and germline LoF mutations in TERT or PARN.

    Article  Google Scholar 

  207. Perdigones, N. et al. Clonal hematopoiesis in patients with dyskeratosis congenita. Am. J. Hematol. 91, 1227–1233 (2016).

    Article  CAS  Google Scholar 

  208. Jongmans, M. C. et al. Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita. Am. J. Hum. Genet. 90, 426–433 (2012).

    Article  CAS  Google Scholar 

  209. Schratz, K. E. et al. Somatic reversion impacts myelodysplastic syndromes and acute myeloid leukemia evolution in the short telomere disorders. J. Clin. Invest. 131, e147598 (2021). This study extends the genes with potential SGR events in the context of TBD to include RNA decay genes, specifically when the germline mutation reduces the level of mature hTR.

    Article  CAS  Google Scholar 

  210. Gutierrez-Rodrigues, F. et al. Clonal hematopoiesis in telomere biology disorders associates with the underlying germline defect and somatic mutations in POT1, PPM1D, and TERT promoter. Blood 138 (Suppl. 1), 1111–1112 (2021).

    Article  Google Scholar 

  211. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  Google Scholar 

  212. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  Google Scholar 

  213. Chiba, K. et al. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife 4, e07918 (2015).

    Article  Google Scholar 

  214. Kennedy, A. L. et al. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman–Diamond syndrome. Nat. Commun. 12, 1334 (2021).

    Article  CAS  Google Scholar 

  215. Tan, S. et al. Somatic genetic rescue of a germline ribosome assembly defect. Nat. Commun. 12, 5044 (2021).

    Article  CAS  Google Scholar 

  216. Ramsay, A. J. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 45, 526–530 (2013).

    Article  CAS  Google Scholar 

  217. Wu, Y., Poulos, R. C. & Reddel, R. R. Role of POT1 in human cancer. Cancers 12, 2739 (2020).

    Article  CAS  Google Scholar 

  218. Bojesen, S. E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384 (2013).

    Article  CAS  Google Scholar 

  219. Dionne, I. & Wellinger, R. J. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Natl Acad. Sci. Usa. 93, 13902–13907 (1996).

    Article  CAS  Google Scholar 

  220. Lai, T. P. et al. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat. Commun. 8, 1356 (2017).

    Article  Google Scholar 

  221. Kahl, V. F. S. et al. Telomere length measurement by molecular combing. Front. Cell Dev. Biol. 8, 493 (2020).

    Article  Google Scholar 

  222. Baird, D. M., Rowson, J., Wynford-Thomas, D. & Kipling, D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat. Genet. 33, 203–207 (2003).

    Article  CAS  Google Scholar 

  223. Lee, M. et al. Systematic computational identification of variants that activate exonic and intronic cryptic splice sites. Am. J. Hum. Genet. 100, 751–765 (2017).

    Article  CAS  Google Scholar 

  224. Arthur, J. W. et al. A novel cause of DKC1-related bone marrow failure: partial deletion of the 3′ untranslated region. EJHaem 2, 157–166 (2021).

    Article  CAS  Google Scholar 

  225. Guo, Q. et al. Intron retention by a novel intronic mutation in DKC1 gene caused recurrent still birth and early death in a Chinese family. Mol. Genet. Genom. Med. 10, e1934 (2022).

    CAS  Google Scholar 

  226. Walne, A. J. & Dokal, I. Dyskeratosis congenita: a historical perspective. Mech. Ageing Dev. 129, 48–59 (2008).

    Article  CAS  Google Scholar 

  227. Gorgy, A. I. et al. Hepatopulmonary syndrome is a frequent cause of dyspnea in the short telomere disorders. Chest 148, 1019–1026 (2015).

    Article  Google Scholar 

  228. Bhala, S. et al. CNS manifestations in patients with telomere biology disorders. Neurol. Genet. 5, 370 (2019).

    Article  Google Scholar 

  229. Catto, L. F. B. et al. Somatic genetic rescue in hematopoietic cells in GATA2 deficiency. Blood 136, 1002–1005 (2020).

    Article  Google Scholar 

  230. Le Guen, T. et al. An in vivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. J. Allergy Clin. Immunol. 136, 1619–1626.e5 (2015).

    Article  Google Scholar 

  231. Kannengiesser, C., Borie, R. & Revy, P. Pulmonary fibrosis associated with TINF2 gene mutation: is somatic reversion required? Eur. Respir. J. 44, 269–270 (2014).

    Article  Google Scholar 

  232. Peffault de Latour, R. et al. Recommendations on hematopoietic stem cell transplantation for inherited bone marrow failure syndromes. Bone Marrow Transpl. 50, 1168–1172 (2015).

    Article  CAS  Google Scholar 

  233. Phillips-Houlbracq, M. et al. Determinants of survival after lung transplantation in telomerase-related gene mutation carriers: a retrospective cohort. Am. J. Transpl. 22, 1236–1244 (2022).

    Article  CAS  Google Scholar 

  234. Silhan, L. L. et al. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. Eur. Respir. J. 44, 178–187 (2014).

    Article  CAS  Google Scholar 

  235. Tokman, S. et al. Clinical outcomes of lung transplant recipients with telomerase mutations. J. Heart Lung Transplant. 34, 1318–1324 (2015).

    Article  Google Scholar 

  236. Stuart, B. D. et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir. Med. 2, 557–565 (2014).

    Article  CAS  Google Scholar 

  237. Fok, W. C. et al. Posttranscriptional modulation of TERC by PAPD5 inhibition rescues hematopoietic development in dyskeratosis congenita. Blood 133, 1308–1312 (2019). This study establishes that reducing hTR 3′-end oligoadenylaton by silencing PAPD5 can increase hTR and telomerase activity, and restore definitive haematopoiesis in DKC1 mutant cells.

    Article  CAS  Google Scholar 

  238. Nagpal, N. et al. Small-molecule PAPD5 inhibitors restore telomerase activity in patient stem cells. Cell Stem Cell 26, 896–909.e898 (2020). This study further develops PAPD5 inhibition as a therapeutical approach in TBDs by demonstrating rescue of telomere homeostasis in PARN-deficient human CD34+ cells in a mouse xenotransplantation model.

    Article  CAS  Google Scholar 

  239. Shukla, S., Jeong, H. C., Sturgeon, C. M., Parker, R. & Batista, L. F. Z. Chemical inhibition of PAPD5/7 rescues telomerase function and hematopoiesis in dyskeratosis congenita. Blood Adv. 4, 2717–2722 (2020).

    Article  CAS  Google Scholar 

  240. Calado, R. T. et al. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114, 2236–2243 (2009).

    Article  CAS  Google Scholar 

  241. Norberg, A. et al. Novel variants in Nordic patients referred for genetic testing of telomere-related disorders. Eur. J. Hum. Genet. 26, 858–867 (2018).

    Article  CAS  Google Scholar 

  242. Vulliamy, T. J. et al. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107, 2680–2685 (2006).

    Article  CAS  Google Scholar 

  243. Vulliamy, T. J. et al. Dyskeratosis congenita caused by a 3′ deletion: germline and somatic mosaicism in a female carrier. Blood 94, 1254–1260 (1999).

    Article  CAS  Google Scholar 

  244. Knight, S. W. et al. Identification of novel DKC1 mutations in patients with dyskeratosis congenita: implications for pathophysiology and diagnosis. Hum. Genet. 108, 299–303 (2001).

    Article  CAS  Google Scholar 

  245. Hiramatsu, H. et al. A novel missense mutation in the DKC1 gene in a Japanese family with X-linked dyskeratosis congenita. Pediatr. Hematol. Oncol. 19, 413–419 (2002).

    Article  CAS  Google Scholar 

  246. Lin, J. H., Lee, J. Y., Tsao, C. J. & Chao, S. C. DKC1 gene mutation in a Taiwanese kindred with X-linked dyskeratosis congenita. Kaohsiung J. Med. Sci. 18, 573–577 (2002).

    CAS  Google Scholar 

  247. Kanegane, H. et al. Identification of DKC1 gene mutations in Japanese patients with X-linked dyskeratosis congenita. Br. J. Haematol. 129, 432–434 (2005).

    Article  CAS  Google Scholar 

  248. Hisata, S. et al. A novel missense mutation of DKC1 in dyskeratosis congenita with pulmonary fibrosis. Sarcoidosis Vasc. Diffus. Lung Dis. 30, 221–225 (2013).

    CAS  Google Scholar 

  249. Kraemer, D. M. & Goebeler, M. Missense mutation in a patient with X-linked dyskeratosis congenita. Haematologica 88, ECR11 (2003).

    Google Scholar 

  250. Ding, Y. G. et al. Identification of a novel mutation and a de novo mutation in DKC1 in two Chinese pedigrees with dyskeratosis congenita. J. Invest. Dermatol. 123, 470–473 (2004).

    Article  CAS  Google Scholar 

  251. Ratnasamy, V. et al. Dyskeratosis congenita with a novel genetic variant in the DKC1 gene: a case report. BMC Med. Genet. 19, 85 (2018).

    Article  Google Scholar 

  252. Parry, E. M. et al. Decreased dyskerin levels as a mechanism of telomere shortening in X-linked dyskeratosis congenita. J. Med. Genet. 48, 327–333 (2011).

    Article  CAS  Google Scholar 

  253. Sznajer, Y. et al. Further delineation of the congenital form of X-linked dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome). Eur. J. Pediatr. 162, 863–867 (2003).

    Article  Google Scholar 

  254. Cossu, F. et al. A novel DKC1 mutation, severe combined immunodeficiency (T+BNK SCID) and bone marrow transplantation in an infant with Hoyeraal–Hreidarsson syndrome. Br. J. Haematol. 119, 765–768 (2002).

    Article  CAS  Google Scholar 

  255. Vulliamy, T. J. et al. Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS ONE 6, e24383 (2011).

    Article  CAS  Google Scholar 

  256. Knight, S. W. et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal–Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br. J. Haematol. 107, 335–339 (1999).

    Article  CAS  Google Scholar 

  257. Kropski, J. A. et al. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest 146, e1–e7 (2014).

    Article  Google Scholar 

  258. Du, H. Y. et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood 113, 309–316 (2009).

    Article  CAS  Google Scholar 

  259. Ly, H. et al. Identification and functional characterization of 2 variant alleles of the telomerase RNA template gene (TERC) in a patient with dyskeratosis congenita. Blood 106, 1246–1252 (2005).

    Article  CAS  Google Scholar 

  260. Fogarty, P. F. et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet 362, 1628–1630 (2003).

    Article  CAS  Google Scholar 

  261. Feurstein, S. et al. Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv. 4, 4873–4886 (2020).

    Article  CAS  Google Scholar 

  262. Alder, J. K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105, 13051–13056 (2008).

    Article  CAS  Google Scholar 

  263. Alder, J. K. et al. Telomere length is a determinant of emphysema susceptibility. Am. J. Respir. Crit. Care Med. 184, 904–912 (2011).

    Article  CAS  Google Scholar 

  264. Borie, R. et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur. Respir. J. 48, 1721–1731 (2016).

    Article  CAS  Google Scholar 

  265. Parry, E. M., Alder, J. K., Qi, X., Chen, J. J. & Armanios, M. Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase. Blood 117, 5607–5611 (2011).

    Article  CAS  Google Scholar 

  266. Philippot, Q. et al. Interstitial lung diseases associated with mutations of poly(A)-specific ribonuclease: a multicentre retrospective study. Respirology 27, 226–235 (2022).

    Article  Google Scholar 

  267. Calado, R. T. et al. A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS ONE 4, e7926 (2009).

    Article  Google Scholar 

  268. Boyraz, B., Bellomo, C. M., Fleming, M. D., Cutler, C. S. & Agarwal, S. A novel TERC CR4/CR5 domain mutation causes telomere disease via decreased TERT binding. Blood 128, 2089–2092 (2016).

    Article  CAS  Google Scholar 

  269. Hartmann, D. et al. Telomerase gene mutations are associated with cirrhosis formation. Hepatology 53, 1608–1617 (2011).

    Article  CAS  Google Scholar 

  270. Ueda, Y. et al. A mutation in the H/ACA box of telomerase RNA component gene (TERC) in a young patient with myelodysplastic syndrome. BMC Med. Genet. 15, 68 (2014).

    Article  Google Scholar 

  271. Kirwan, M. et al. Defining the pathogenic role of telomerase mutations in myelodysplastic syndrome and acute myeloid leukemia. Hum. Mutat. 30, 1567–1573 (2009).

    Article  CAS  Google Scholar 

  272. Ly, H. et al. Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood 105, 2332–2339 (2005).

    Article  CAS  Google Scholar 

  273. Ortmann, C. A. et al. TERC mutations in children with refractory cytopenia. Haematologica 91, 707–708 (2006).

    CAS  Google Scholar 

  274. Han, B. et al. Telomerase gene mutation screening in Chinese patients with aplastic anemia. Leuk. Res. 34, 258–260 (2010).

    Article  CAS  Google Scholar 

  275. Vogiatzi, P., Perdigones, N., Mason, P. J., Wilson, D. B. & Bessler, M. A family with Hoyeraal–Hreidarsson syndrome and four variants in two genes of the telomerase core complex. Pediatr. Blood Cancer 60, E4–E6 (2013).

    Article  Google Scholar 

  276. Dressen, A. et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respir. Med. 6, 603–614 (2018).

    Article  CAS  Google Scholar 

  277. Erdem, M., Tufekci, O., Yilmaz, S., Alacacioglu, I. & Oren, H. Long-term follow-up of a case with dyskeratosis congenita caused by NHP2-V126M/X154R mutation: genotype-phenotype association. Acta Haematol. 141, 28–31 (2018).

    Article  Google Scholar 

  278. Sarper, N., Zengin, E. & Kiliç, S. C. A child with severe form of dyskeratosis congenita and TINF2 mutation of shelterin complex. Pediatr. Blood Cancer 55, 1185–1186 (2010).

    Article  Google Scholar 

  279. Gleeson, M. et al. Retinal vasculopathy in autosomal dominant dyskeratosis congenita due to TINF2 mutation. Br. J. Haematol. 159, 498 (2012).

    Google Scholar 

  280. Panichareon, B. et al. Novel mutation of the TINF2 gene in a patient with dyskeratosis congenita. Case Rep. Dermatol. 7, 212–219 (2015).

    Article  Google Scholar 

  281. Du, H. et al. A case report of heterozygous TINF2 gene mutation associated with pulmonary fibrosis in a patient with dyskeratosis congenita. Medicine 97, e0724 (2018).

    Article  CAS  Google Scholar 

  282. Roake, C. M., Juntilla, M., Agarwal-Hashmi, R., Artandi, S. & Kuo, C. S. Tissue-specific telomere shortening and degenerative changes in a patient with TINF2 mutation and dyskeratosis congenita. Hum. Pathol. 25, 200517 (2021).

    Google Scholar 

  283. Tsangaris, E. et al. Ataxia and pancytopenia caused by a mutation in TINF2. Hum. Genet. 124, 507–513 (2008).

    Article  CAS  Google Scholar 

  284. Gupta, M. P., Talcott, K. E., Kim, D. Y., Agarwal, S. & Mukai, S. Retinal findings and a novel TINF2 mutation in Revesz syndrome: Clinical and molecular correlations with pediatric retinal vasculopathies. Ophthalmic Genet. 38, 51–60 (2017).

    Article  CAS  Google Scholar 

  285. Moussa, K., Huang, J. N. & Moore, A. T. Revesz syndrome masquerading as traumatic retinal detachment. J. AAPOS 21, 422–425 e421 (2017).

    Article  Google Scholar 

  286. Sakwit, A. et al. Novel mutation of the TINF2 gene resulting in severe phenotypic Revesz syndrome. Pediatr. Blood Cancer 66, e27557 (2019).

    Article  Google Scholar 

  287. McElnea, E. M. et al. Revesz syndrome masquerading as bilateral cicatricial retinopathy of prematurity. J. AAPOS 17, 634–636 (2013).

    Article  Google Scholar 

  288. Du, H. Y., Mason, P. J., Bessler, M. & Wilson, D. B. TINF2 mutations in children with severe aplastic anemia. Pediatr. Blood Cancer 52, 687 (2009).

    Article  Google Scholar 

  289. Yamaguchi, H. et al. Identification of TINF2 gene mutations in adult Japanese patients with acquired bone marrow failure syndromes. Br. J. Haematol. 150, 725–727 (2010).

    Article  CAS  Google Scholar 

  290. Keel, S. B. et al. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica 101, 1343–1350 (2016).

    Article  CAS  Google Scholar 

  291. Magnusson, T., Godby, R. C., Bachiashvili, K. & Jamy, O. First report of novel heterozygous WRAP53 p.Ala522Glyfs*8 mutation associated dyskeratosis congenita. Br. J. Haematol. 196, e27–e29 (2022).

    Article  CAS  Google Scholar 

  292. Han, E. et al. A unique case of coats plus syndrome and dyskeratosis congenita in a patient with CTC1 mutations. Ophthalmic Genet. 41, 363–367 (2020).

    Article  CAS  Google Scholar 

  293. Riquelme, J. et al. Primary ovarian failure in addition to classical clinical features of coats plus syndrome in a female carrying 2 truncating variants of CTC1. Horm. Res. Paediatr. 94, 448–455 (2021).

    Article  CAS  Google Scholar 

  294. Bisserbe, A. et al. Cerebro-retinal microangiopathy with calcifications and cysts due to recessive mutations in the CTC1 gene. Rev. Neurol. 171, 445–449 (2015).

    Article  CAS  Google Scholar 

  295. Netravathi, M. et al. Whole exome sequencing in an Indian family links Coats plus syndrome and dextrocardia with a homozygous novel CTC1 and a rare HES7 variation. BMC Med. Genet. 16, 5 (2015).

    Article  Google Scholar 

  296. Moriya, K. et al. Novel compound heterozygous RTEL1 gene mutations in a patient with Hoyeraal-Hreidarsson syndrome. Pediatr. Blood Cancer 63, 1683–1684 (2016).

    Article  CAS  Google Scholar 

  297. Ziv, A. et al. An RTEL1 mutation links to infantile-onset ulcerative colitis and severe immunodeficiency. J. Clin. Immunol. 40, 1010–1019 (2020).

    Article  CAS  Google Scholar 

  298. Belaya, Z. et al. Multiple bilateral hip fractures in a patient with dyskeratosis congenita caused by a novel mutation in the PARN gene. Osteoporos. Int. 32, 1227–1231 (2021).

    Article  CAS  Google Scholar 

  299. Kropski, J. A. et al. Rare genetic variants in PARN are associated with pulmonary fibrosis in families. Am. J. Respir. Crit. Care Med. 196, 1481–1484 (2017).

    Article  CAS  Google Scholar 

  300. Verduyn, M., Rigaud, M. & Dromer, C. [A rare familial form of idiopathic pulmonary fibrosis with poly(A)-specific ribonuclease (PARN) mutation]. Rev. Pneumol. Clin. 73, 272–275 (2017).

    Article  CAS  Google Scholar 

  301. Zhang, D. et al. Homozygous rare PARN missense mutation in familial pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 797–799 (2019).

    Article  Google Scholar 

  302. Techer, H., Koundrioukoff, S., Nicolas, A. & Debatisse, M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat. Rev. Genet. 18, 535–550 (2017).

    Article  CAS  Google Scholar 

  303. Bryan, T. M. G-Quadruplexes at telomeres: friend or foe? Molecules 25, 3686 (2020).

    Article  CAS  Google Scholar 

  304. Azzalin, C. M. & Lingner, J. Telomere functions grounding on TERRA firma. Trends Cell Biol. 25, 29–36 (2015).

    Article  CAS  Google Scholar 

  305. Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).

    Article  CAS  Google Scholar 

  306. Glousker, G., Touzot, F., Revy, P., Tzfati, Y. & Savage, S. A. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br. J. Haematol. 170, 457–471 (2015).

    Article  Google Scholar 

  307. Niewisch, M. R. & Savage, S. A. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev. Hematol. 12, 1037–1052 (2019).

    Article  CAS  Google Scholar 

  308. Niewisch, M. R. et al. Disease progression and clinical outcomes in telomere biology disorders. Blood 139, 1807–1819 (2022).

    Article  CAS  Google Scholar 

  309. Savage, S. A. Beginning at the ends: telomeres and human disease. F1000Res 7, F1000 Faculty Rev-524 (2018).

    Article  Google Scholar 

  310. Schratz, K. E. & Armanios, M. Cancer and myeloid clonal evolution in the short telomere syndromes. Curr. Opin. Genet. Dev. 60, 112–118 (2020).

    Article  CAS  Google Scholar 

  311. Alter, B. P., Giri, N., Savage, S. A. & Rosenberg, P. S. Cancer in dyskeratosis congenita. Blood 113, 6549–6557 (2009).

    Article  CAS  Google Scholar 

  312. Schratz, K. E. et al. Cancer spectrum and outcomes in the Mendelian short telomere syndromes. Blood 135, 1946–1956 (2020).

    Article  Google Scholar 

  313. Crow, Y. J. et al. Coats’ plus: a progressive familial syndrome of bilateral Coats’ disease, characteristic cerebral calcification, leukoencephalopathy, slow pre- and post-natal linear growth and defects of bone marrow and integument. Neuropediatrics 35, 10–19 (2004).

    Article  CAS  Google Scholar 

  314. Briggs, T. A. et al. Cerebroretinal microangiopathy with calcifications and cysts (CRMCC). Am. J. Med. Genet. A 146A, 182–190 (2008).

    Article  CAS  Google Scholar 

  315. Armanios, M. Telomerase mutations and the pulmonary fibrosis-bone marrow failure syndrome complex. N. Engl. J. Med. 367, 384 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work could not be cited owing to restriction in the number of references allowed. P.R. thanks the members of the GDIS lab and is grateful to A. Fischer for discussion, advice and constant support. P.R. also thanks A. Decottignies and A. Fischer for critical reading of the manuscript. Current work in P.R.’s laboratory is funded by INSERM, Ligue Nationale contre le cancer, INCa and ANR. P.R. is a scientist from Centre National de la Recherche Scientifique (CNRS). Current work in A.A.B.’s laboratory is funded by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

P.R. and A.A.B. wrote the article. All authors contributed equally to all other aspects of the article.

Corresponding author

Correspondence to Patrick Revy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jonathan K. Alder, Marcin W. Wlodarski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

R-loops

Nucleic acid structures composed of an RNA–DNA hybrid and a displaced single-stranded DNA that accumulate at specific regions genome-wide, including telomeres. R-loops can cause replication stress and genome instability.

G-quadruplexes

Four DNA stranded secondary structures formed in G-rich sequences in which four guanines form a planar array via Hoogsteen base-pairing. These structures can cause replication stress.

Somatic genetic rescue

In Mendelian disorders, an in vivo somatic genetic event that partially or totally counteracts the deleterious effect of the pathogenic germline mutation and provides a selective advantage over non-somatically modified cells.

Clones

Cells that originate from a common cell ancestor (progenitor) with identical genetic identity.

Genetic anticipation

A phenomenon observed in autosomal dominant diseases in which some clinical manifestations develop earlier and are more severe with successive generations.

Phenocopy

A phenomenon whereby the phenotype dissociates from the genotype. In the present Review, when individuals with familial telomere biology disease exhibit short telomeres and/or premature ageing without carrying the causative germline variant.

Repeat addition processivity

(RAP). The ability of telomerase to synthesize multiple telomeric repeats without dissociating from the telomere.

Monoallelic

Refers to one genetic variant located on one allele of a gene.

Biallelic

Refers to two (possibly different) variants located on both alleles of the same gene.

Hypomorphic

Refers to a variant that results in reduced but not eliminated function of the gene product.

Compound heterozygous

The existence of distinct mutations on opposite alleles of a single gene located on an autosomal chromosome.

Cajal bodies

Distinct sub-nuclear structures present in eukaryotic cells associated with RNA metabolism and ribonucleoprotein biogenesis.

Incomplete penetrance

Refers to the phenomenon of some individuals who carry a pathogenic variant who do not exhibit clinical signs.

Variable expressivity

Refers to the phenomenon of individuals affected by a Mendelian disease who exhibit different clinical features.

t-circles

Extrachromosomal circular DNA molecules that contain telomeric repeat sequences.

Uniparental isodisomy

Refers to both copies of a chromosome originating from one parent (maternal or paternal) and the chromosome from the other parent being absent. Segmental uniparental isodisomy occurs when only part of a chromosome is affected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revy, P., Kannengiesser, C. & Bertuch, A.A. Genetics of human telomere biology disorders. Nat Rev Genet 24, 86–108 (2023). https://doi.org/10.1038/s41576-022-00527-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00527-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing